CAMBIA AUTOMATION LIMITED

ALLEN BRADLEY 1785-V40L

DATASHEET

Cambia Group

Email: sales@cambia.cn

o

Allen-Bradley

PLC-5 VME
VMEbus User

Programmable M anu a‘

Controllers

(1785-V30B, -V40B,
-V40L, and -V80B)

Important User Information Because of the variety of uses for the products described in this publication, those
responsible for the application and use of this control equipment must satisfy
themselves that all necessary steps have been taken to ensure that each application
and use meets all performance and safety requirements, including any applicable
laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide
are intended solely for purposes of example. Since there are many variables and
requirements associated with any particular installation, Allen-Bradley does not
assume responsibility or liability (to include intellectual property liability) for

actual use based on the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the Application,
Installation, and Maintenance of Solid State Control (available from your local
Allen-Bradley office), describes some importanfetiénces between solid-state
equipment and electromechanical devices that should be taken into consideration
when applying products such as those described in this publication.

Reproduction of the contents-of this copyrighted publication, in whole or in part,
without written permission of Ailen-Bradley Company, Inc., is prohibited.

Throughout this manual we use notes to make you aware of safety considerations:

ATTENTION: Identifies information about practices or
circumstances that can lead to personal injury or death,
property damage, or economic loss.

Attention statements help you to:

» identify a hazard
= avoid the hazard
= recognize the consequences

Important: Identifies information that is critical for successful application and
understanding of the product.

Table of Contents

Summaryof Changes i ﬂ
Using this Manual
Manual ObJeCtiveS
What this Manual Containsoovueeinnn.... i
AUdIENCE . oo i
Terms and CONVENtIONS vvvveeeee e s %
Related Publications0 ...

OVEIVIEW ..ot e e 1-1
Chapter ObjeCtives 0 co. 0 i,
FEAtUreS ... vve e
System Descriptiono i
VMEbUS Interfaceou. v vt
Compatibility with the Standard PLC-5 Processor
Compatibility with-the 6008-LTV Processor
Installation .o ot 2-1
Chapter ObJECHVES v ottt e
Handling the Processorouuuerereneenan...
Seting the SWItCheso oot
Configuring the VME Backplane Jumpers
Inserting the ProcessorintoaChassis
GIOUNAING . . . o oo e e
Determining Power-Supply Requirements 2-6
ConnectingtoRemote IO, 2-6
Connecting an Extended-Local I/OLink _[2-10]
ConnectingaDH+Link i, [2-12]
Connecting a Programming Terminal to Channel0 _[2-14]
Installing, Removing, and Disposing of the Battery 2-15
VMEDbus Interface 3-1
Chapter ODJECHVESot
System Controller E
Bus-ReleaseModes 3-2
VMELEDS &'ttt oo 3-2]
VMESignalUsage 3-3)
Configuration Registers, 13-4
(0701111117 115 S

Table of Contents

Ladder-Program Interfaces 4-1
Chapter Objectives i 4-1
Ladder MESSAgES oot 4-1
Message Completion and Status Bits 4-6
VMEStatusFile o 4-7
Continuous Copy to/fffomVME o 4-10
VMEbus Interrupts 4-11
Commands 5-1
Chapter ObJECHIVES\ttt
ComMANd TYPES © . v v v ove et et
Continuous-Copy Commandsvv.n...
Handle-Interrupts Command0 ;v "o, [5-5]
Send-PCCCCommand ;e b, 5-7]
Command-Protocol Error Codes ...« v o _|5-8]
Response-Word Error Codeso v i
PLC-5/VME Processor Comrunications Commands 6-1
Chapter ObJECHIVES .2 v Lo
PCCC SHUCIUIE . . . o it et e e e et e e e e
Supported PCCCS . o ot e e e
Header Bit/Byte Deseriptions, E
Echo. .. o e 6-5
ldentifyHostand Status _|6-6
Read-Modify-Write 6-8
TypedRead 6-10
Data TYPeS ..ot 6-12
Typed Write 6-18
SEtCPUMOLE _[6-20]
Upload AllReqUESE oo _16-21]
Download AlRequest, _16-23
Upload Complete _16-24]
Download Completeot _[6-25]
Read Bytes Physical i, 6-26
Write Bytes Physical i E
GetEdit RESOUrCE .. .ot 6-29
Return EditResource i 6-30
Apply Port Configuration 6-31
Restore Port Configuration oo, 6-32

Upload and Download Procedure |6-34

Table of Contents ii
Performance and Operation 7-1
Chapter Objectives 7-1
VME Throughput Time 7-1
CommunicationMethodsl 7-2
Benchmark Tests i 7-4
Introduction to PLC-5/VME Processor Scanning
Discrete and Block Transfer I/O Scanning 7-12
Sample Applicationst
Appendix OBJECHVESttt
VMEDEMO.CPP\ ieoeee
VMEDEMO.MAK A-13
UPLOAD.CPP\ _[A-15]
UPLOADMAK ... e _|A-26]
DOWNLOAD.CPP\t it e [A-27]
DOWNLOAD.MAK . . . i e e e A-34
Sample Application Prograrming Interface Modules
Appendix ODJECHYES. . . .0 .ot
COMMONH .. e e e
COMMON.C (i i e e e
PAOVCCOH . o oo [B-17]
PAOVECO.Cot . e _|B-18]
PCCCH et _[B-30]
PAOVHINT.H .. o e B-32
PAOVHINT.C . . B-33
PAOVSPCCH B-39
PAOVSPCC.C ... B-40
PAOVWBPH ...ttt _[B-43]
PAOVWBP.C ...ttt _[B-44]
PAOVAPCH .. . _|B-46
PAOVAPC.C ..\ttt _|B-47)
PAOVULC.H ..ttt _[B-49]
PAOVULC.C e B-50
PAOVDLAH ..o E
PAOVDLA.C . B-53
PAOVDLC.H B-55
PAOVDLC.C B-56
PAOVECHOH e B-58
PAOVECHO.C ..o\ttt _[B-59]
PAOVGERH ...\t _|B-61
PAOVGER.C ..\t _[B-62]
PAOVIHAS.H B-64
PAOVIHAS.C B-67

Table of Contents

PAOVRBPH ...
PAOVRBP.C ...
PAOVRERH
PAOVRER.C
PAOVRMW.H . ..o
PAOVRMW.C . . .
PAOVRPC.H ...
PAOVRPC.C ...
PAOVSCM.H ...
PAOVSCM.C ...
PAOVULAH T
PAOVULA.C .

Specifications e

Environmental Specifications
VMEbus Specifications 0. . 0 i

Troubleshooting0 o

Appendix ObJeCtiVES ... /. cn e
VME Backplane JUmpers
VMELEDS 0
Message Completion and Status Bits Error Codes
Continuous-Copy Error Codes
Command-Protocol Error Codes
Response-Word Error Codes
PCCC.Command Status Codesccvvvnvin...
Avoiding Multiple Watchdog Faults1.
Inserting Ladder Rungs at the 56K-Word Limit
Recovering from Possible Memory Corruption
Examining FaultCodes

Avoiding Run-time Errors when Executing FBC and
DDTINSLIUCtIONS . . o .o et

Cable Connections

Cable Connections for Communication Boards
Cable Connections for Serial-Port Communications
FrontPanel
Cable Pin Assignments,
Cable Specifications i

D
©

oo ||Co
[l ~ [l
w [Nl

NE
N fi—

&
H

o [
= =

..UI‘.U.U.
N N fli—

N

v W)

g
(21| ([Sa] [[<%] | (@8]

Table of Contents

Figures/Tables

Compliance to European Union Directives
Figure 2.3

Terminating a Remote /O Link Using a Resistor
Figure 2.4

Programming Terminal to Channel 0 of a PLC-5/VME Processor
Figure 2.5

Installing a Processor Battery (cat. no. 1770-XYV)
Table 2.C

Programming Terminal to Channel 0 Interconnect Cables

2-14

Summary of Changes

Summary of Changes

This release of the PLC-5/VME VMEbus Programmable Controllers User
Manual contains new and updated information on PLC-5/VVMiystems.

For infornmation about: See chapter/appendix:

CE compliance

making VME self-references in POST tests

improved .WRDY and .LOCK bit description

changes to the status file

setting the NOCV bit to 0

revised specifications

ol o N & w| o~

additional troubleshooting tips

To help you find new.and updated information in this release of the
manual, we have included change bars as shown to the left of
this paragraph:

In addition to the new and updated information discussed above, we have
altered the way we reference software documentation in this manual.
Rather than show specific screens and key sequences which may vary
according to the software package you are using, we refer you instead to
the programming software documentation that accompanies your particular
software package. Of course, we still provide the basic background
information you need to accomplish your programming tasks, but if you
have specific questions, you should refer to your programming software
documentation set.

vii

Preface

Using this Manual

The purpose of this manual is to familiarize you with the installation and
use of the PLC-5/VME programmable controllers. This manual focuses on
the specific VMEDbus aspects of this processor. Typically, you use this
processor in a VMEbus system with one or more host CPU modules that
control(s) and communicate(s) with the processor. You need to develop
software driver programs to execute on the host CPU module(s) to
accomplish this. You must also write ladder programs for your processor
to monitor and control the I/O of your'control system. This manual helps
you write the VMEbus-specific aspects of these programs.

Manual Objectives

o .

What this Manual Contains

Chapter/ | Title Contents
Appendix
1 Overview Overview of the PLC-5/VME processors

Installation Configuration and installation procedures

2
3 VMEDbus Interface
4 Ladder-Program Interfaces

Configuration registers and commands

How to interact with your VMEbus environment from
your ladder program

Commands Commands used to interface to the processor

6 TPLC-SNME Processor The function of the extended PCCCs in the
Communications Commands | PLC-5/VME processor

(6]

Overview of the performance and operation of the
PLC-5/VME processor

How to write applications to interact with your
PLC-5/VME processor

7 Performance and Operation

A Sample Applications

Audience

B Sample APl Modules How to write API modules to interact with your
PLC-5/VME processor
C Specifications PLC-5/VME processor specifications
Troubleshooting Troubleshooting and error-code information

Cable Connections

Communication boards and cable connections for
pLc5H family processors

This manual assumes that you have background in:

= VMEDbus concepts and basics
» PLC-5 ladder logic

» PLC-5/VME operation

= C-language programming

Preface

Using this Manual

Terms and Conventions We refer to the: As the:
Data Highway DH link
Data Highway Plus DH+0O link
Programmable Logic Controller processor
PLC-55 Processor PLC-5/VME processor. Unless noted otherwise,
we use PLC-5/VME processor to denote all processors.
Programmable Controller pPCCC !
Communications Commands
Release on request ROR N
Release when done RWD
Term Definition D
Extended-local I/0 I/O connected to a proceéaacross a parallel link, thus limiting its

distance from the processor

Extended-local I/O link | a parallel link for carrying 1/0 data between a PLC-5/V40L
processor and extended-local 1/0 adapters

Remote I/0 link a serial. communication link between a PLC-5 processor port in
scanner.mode and an adapter as well as I/0 modules that are
located-remotely from the PLC-5 processor

Remote I/O chassis .. | the hardware enclosure that contains an adapter and /O modules
‘ that are located remotely on a serial communication link to a
PLC-5 processor in scanner mode

Discrete-transfer data | data (words) transferred to/from a discrete 1/0 module

Block-transfer data data transferred, in blocks of data up to 64 words, to/from a block-
transfer 1/0 module (for example, an analog module)

In addition, you may encounter words in different typefaces. We use these
conventions to help differentiate descriptive information from information
that you enter while programming your processor.

The Enter key looks like this (boldface and in brackets):
[Enter]

= Words or commands that you enter appear in boldface. For example:
CTV # SVI

= Variables that you enter appear in italics. For example:
vmeaddr width

= “Type” means type in the information.

= “Enter” means type in the information and then presgher] key.

Related Publications

Preface

Using this Manual

The 1785 PLC-5 programmable controller documentation is organized
into manuals according to the tasks that you perform. This organization
lets you find the information that you want without reading through
information that is not related to your current task.

Enhanced PLC-5 Enhanced and Ethernet 1785PLC-5
Processors System PLC-5 Programmable Programmable Controllers
System Overview Controller User Manual Quick Refererice
. Quick access to switches,
Overview of processor Explanation of processor _staius hits, indicators,
specifications. selection, fgnctionality, system instructions, SW screens
and justification information design, and programming
considerations
1785-2.36 i 1785-6.5.12 i 1785-7.1

For more information on 1785 PLC-5 programmable controllers or the
above publications, contact your local Allen-Bradley sales office,
distributor, or system integrator.

We also suggest that you.acquire the following publications for reference:

= Data Highway /- Data Highway Plus DH-485 Communication Protocol
and Command Set Referepnédlen-Bradley, publication 1770-6.5.16

» The VMEbus Specification—Rev: CMotorola, HB212

» VMEbusUser's HandbooglSteve Heath, CRC Press, ISBN
0-8493-7130-9

Chapter

Overview

Chapter Objectives Read this chapter to understand the overall operation.of the PLC-5/VME
processor, how you can use it in VME systems, and how.its features and
functions relate to those of other Allen-Bradley processors.

Features PLC-5/VME processors are programimable controllers that bring the
technology of the 1785 PLC-5 processor to the VMEbus environment.

The PLC-5/VME processor is equivalent (in terms of I/O, ladder
programming, and instruction.timing) to the standard PLC-5 processor,
except that the PLC-5/VME processor:

= plugs into a VMEbus system

= has a VMEbus cormmunication interface designed for use with other
VMEDbus CPU modules

= can access VMEbus I/0O modules
» hasno EEPROM memory module

Figure 1.1 shows examples of the PLC-5/VME processors.

1-1

Chapter 1

Overview

Figure 1.1
Examples of PLC-5/VME Processors
S S SRS S S
Battery installed ———> Battery installed ———> Battery installed ——— T
Program ——> Program ——> Program ——> /,,
Remote ———> Remote —> Remote ——> \(@
Run — Run — Run — =
Chan 1 Chan 1 i Chan 1
Battery low —>| O 0 Battery low —>| O O Battery low —>| O O
Proc run/Fault —| © Proc run/Fault —| © Proc run/Fault —=| ©
Force ——— | © Force ——— | © Force ———| O =
ChO Status —»|© 1N ChO Status —»|© [Ch0 Status —»| © N
SYSFAL —>|© L i SYSFAL —>|© L i SYSFAL —| 0 L 0
Master Access > | © o] u‘ 1A Master Access > | © o] u‘ 1A Master Access | © (o]l U‘ 1A
Slave Access —>| © ﬂ Slave Access —>| © ﬂ Slave Access —>| © ﬂ
LollTe 1B (o llTer— 18 LollTe 18
O O
@D o
Chan 0 & Chan 0| |
i
Chan 2 Chan 2
O]
© & © 9 © ©
PLC-5/V30B processor PLC-5/V40B or -5/V80B processor PLC-5/V40L processor

19499

All PLC-5/VME processors have at least one configurable 1/0O channel and
one serial port (channel 0).

Channel: Is configured for:
0 supporting RS-232C

The PLC-5/VME processor channel 0 protocol defaults to the system mode of
operation (DF1 point-to-point), which allows programming from a PC terminal.
The default communication rate is 2400.

1A DH+ mode (by default)

1B scanner mode (by default)

2 (if applicable) | DH+ and remote I/O (RIO) communication or extended-local I/O

1-2

Chapter 1

Overview

In the PLC-5/V40B, both channels (1 and 2) are identical although they are
independently configurable. In the PLC-5/V40L, channel 2 is a local I/O
(LIO) interface.

The PLC-5/VME processor has the same instruction set as the standard
PLC-5 processor. It supports:

= complex expressions in compare and compute instructions
= statistical instructions

» floating-point calculations in PID instructions

= ASCII string-handling instructions

= main control programs (MCPSs)

Use the keyswitch to change the mode in'which a processor is operating.

If you want to: Turn the keyswitch to:

 Run your program, force I/O, and save yourprogramstoa | RUN
disk drive. Outputs are enabled. (Equipment being
controlled by the 1/0 addressed in the ladder program begins PROG
operation.)

« Enable outputs.

Note: You cannot create or delete a program file, create or RUN
delete data files, or-change the modes of operation
through the-programming software while in
run-mode.

©

« Disable outputs PROG (program)

« Create, modify, and delete ladder files or data files;
download to an EEPROM module; and save/restore
programs.

Notes: E
* The processor does not scan the program.

PROG

=z=m>D
KJ

RUN
* You cannot change the mode of operation through

the programming software while in program mode.

Change between remote program, remote test, and remote run | REM (remote)
modes through the programming software.

Remote run

« Enable outputs.
* You can save/restore files and edit online. E

Remote program
See the program-mode description above.

PROG

Z=m>D
KJ

RUN

Remote test

« Execute ladder programs with outputs disabled.
* You cannot create or delete ladder programs or data files.

1-3

Chapter 1

Overview

System Description Use the PLC-5/VME processor in a 6U (full-height) VMEbus chassis. You
can use the PLC-5/VME processor by itself (i.e., with no other VME
modules), but typically the PLC-5/VME processor is used in conjunction
with other VMEbus computers (CPUs) and I/0 modules. The examples
below illustrate possible configurations.

cPU f DH+ link

J° B The PLC-5/VME processor is used in conjunction with a VMEbus CPU module. The
q ; o processor serves as a real-time 1/0 processor under the direction of the. CPU. The

J % i processor is a slave of the CPU, where, in addition to its normal ladder logic and 1/0
o ﬂﬁ - processing in each scan loop, the processor responds to directions from the CPU and

passes data back to the CPU.

PLC-5/VME \ Remote I/0
processor or Extended-
Local I/0

-

CPU .) . . .

1o = T - There is no fixed relationship between processor and CPU, so multiple CPUs can

J @ _ communicate with one processor. Multiple:CPUs run multiple tasks, all sending and
receiving data from the processor at the same time.

N)] ﬂl ~

PLC-5/VME processor 19500

CPU

o - One CPU can control muitiple PLC-5/VME processors. Each processor maps into the
o : F o VMEDbus address space;so you map each processor to a different address space.
oW

PLC-5/VME processors

PLC-5/VME processor

= - No CPU interacts with the processor. The processor interacts with /0 modules in one
0] . . .
il - or more remote I/O racks and has the capability, from its ladder program, of generating
| { B VMEbus accesses. This means that the processor can access VMEbus I/O modules
Gﬂﬁ i as well.
-

19500

Chapter 1

Overview

The following diagrams show three basic configurations for programming
and debugging your ladder-logic programs.

PLC-5/VME i
processor DH+ link
T N Connect a computer via the DH+ link, typically using a
i 2 . 1784-KT communication device in your IBM ATH computer
) I and a 1784-CP6 cable.
1B l
4
. Pitc'SNME processzr Connect a.computer using the RS-232C on-bhoard serial
| i port of the PLC-5/VME processor. In this configuration, the
i RS-232C cable connects one of the computer's COM ports
] ﬂﬁ i to.the channel 0 (serial) port of the processor.
RS-232
|
PC/CPU PLC-5/VME processor You can program as well as download files directly over the
= B - VMEDbus backplane to your PLC-5/VME processor if you:
° ° = run 6200 Series PLC-5 Programming Software release
° ﬂ ° 4.4 or later

7 : = use an 8086-based CPU from RadiSys—i.e., a EPC-1,
[—] EPC-4, or EPC-5 VME PC-compatible computer.

Important: In order to use the save feature of the 6200

Series PLC-5 Programming Software when you

communicate with the processor in this way, you must run

L9501 release 4.5 or later.

Chapter 1

Overview

VMEDbus Interface

Configuration/control/
status/message
registers in A16 space

Optional general-purpose
memory in A24 space

1-6

Processor

VMEbus

The PLC-5/VME is fully compliant with the C.1 VMEDbus specification.

The PLC-5/VME processor occupies two 6U VMEDus slots. It can reside
in any adjacent pair of slots, including slot 1, the system-controller slot.
The PLC-5/VME processor has a single VMEbus P1 connector, allowing it
to be used in VMEbus systems that have either the full J1 and J2
backplanes or only the J1 backplane.

The PLC-5/VME processor occupies 64 bytes in the VME A16 (or
“short”) address space, and you can configure an additional 64 Kbytes of
the A24 (or “standard”) address space.

The PLC-5/VME processor has 8 16-bit registers ‘aceessible in the VMEbus A16 address
space. A set of switches establishes the base address of these registers. These
registers can be used by a VMEbus CPU to establish certain programmable configuration
options of the processor, control and monitor certain low-level conditions, and send
commands to the processor.

The PLC-5/VME processor-also has 64 KB of memory that can be enabled and mapped
in the VME A24 address space. This memory is a general-purpose memory that you can
use for any purpose (ornot atall). If you enable it and tell the processor to do something
to a VME address that-happens to fall into this 64KB memory, the processor can access it
without actually using VMEbus cycles. If you need some global VMEbus memory that
can be accessed by.the processor and another CPU, there may be performance benefits
to using this 64KB of memory.

Chapter 1

Overview

Figure 1.2 illustrates the basic forms of communications. Table 1.A
summarizes these communication forms.

Figure 1.2
Basic Forms of Communications

A

Commands sent to the processor

Ladder @
programs - Read/write accesses to the processor's A16 registers and/or
@ the A24 memory block
= Interrupt to a ladder program
@ > Interrupt signalled by a ladder program
@ . One-shot block copy into or out of processor data files
> Continuous block copies into or out of processor data files
@ _Interrupt signalling command completion
S
(8)
7 Interrupt signalling completion of one block copy
N
> One-shot block copy into or out of processor data files as a
SFOCGSSOY result of some commands sent to the processor
ata
Files VMEbus SYSRESET
< @ VMEbus SYSFAIL
77777777 - @ VMEbus ACFAIL 1
VME status file @

Optional VMEbus system controller functions

1 Required by the PLC-5/VME processor. Asserted by VME power supply.

1-7

Chapter 1

Overview

1-8

In Figure 1.2,
when you see :

Table 1.A
Summary of Figure 1.2

It means that:

Commands are high-level directives sent to the processor from another VMEbus master, typically a
controlling CPU. Commands specific to the VME processor can establish a continuous block copy to/from
the processor and tell the processor to which VMEbus interrupts it should respond. You can also send any
PCCC via this mechanism. PCCCs are commands supported in all 1785 PLC-5 processors. You can use
them to change and modify processor state, for example, or to upload and download mermory files.

The PLC-5/VME processor responds as a VMEbus slave to certain A16 accesses (lo'its configuration
registers) and to certain A24 accesses (to its general-purpose memory, if enabled).

You can configure the PLC-5/VME processor to respond as an interrupt handler to specified VMEbus
interrupt lines. When one of these interrupts occurs, the processor performs an 8-bit interrupt acknowledge
cycle on the VMEbus to read an 8-bit status/ID from the interrupter. The interrupt and the status/ID value
are then posted for accessibility by the ladder program.

The PLC-5/VME processor can perform as a VMEbus interrupter (sender of interrupts) in three
different ways:

« from a ladder program; the ladder MSG instruction has been extended in the PLC-5/VME processor to
allow a ladder program to generate a VMEbus iriterrupt.

« signalling completion of a command (see 7).
« signalling a completion of each block.copy operation for the continuous copy operations (see 8).

Another function available via the MSG instruction is VMEbus reads and writes. Rather than just individual
8- or 16-hit accesses, the function allows a block read or write to be done (i.e., of an arbitrary number of
bytes). This is done between a datafile in the processor and an arbitrary address range on the VMEbus.
The ladder program can specify the VMEbus address space and data widths to be used.

One of the main interfaces of the-6008-LTV processor, and one preserved in the PLC-5/VME processor, is
the ability to predefine two block-copy operations, one into the processor data files and one out of the
processor data files, to he executed automatically every scan loop. These operations are predefined to the
processor via initialization commands from the CPU or from your programming software.

The processor ¢an be a VMEbus interrupter signalling completion of a command. This is an option on all
commands and can serve as a way to synchronize the CPU and the processor.

The processor can be a VMEbus interrupter signalling completion of each block copy operation for the
continuous copy operations. This is another option that allows the CPU to synchronize with the scan loop
of the processor.

Certain standard PCCC commands cause data to be moved into and out of the processor; thus these
commands represent another type of VMEbus interface between the processor and a controlling CPU.

10

11

12

13

The PLC-5/VME processor can be reset with the VME SYSRESET! signal. The PLC-5/VME processor
also asserts SYSRESET! during power-up initialization until its VMEbus interface hardware is capable of
responding to VMEbus accesses.

The PLC-5/VME processor asserts the VME SYSFAIL! signal after a reset until the firmware's self-test
completes successfully. The PLC-5/VME processor makes the state of the VME SYSFAIL! signal
available to the ladder program.

Assertion of VME ACFAIL! causes the processor to halt, with integrity of the ladder program and data files
maintained in the battery-backed memory such that the processor can be restarted upon power up. Your
power supply must assert ACFAIL! at least 9ms in advance of the +5VDC supply dropping beneath 4.75V.

The PLC-5/VME processor can serve as a VMEbus slot-1 system controller. This enables the PLC-5/VME
processor as a single-level arhiter, a bus timeout timer, and the driver of the VMEbus 16 MHz
SYSCLK signal.

Lindicates a low true signal.

Chapter 1

Overview

Compatibility with the Ladder programs from a standard PLC-5 processor run in the PLC-5/VME

Standard PLC-5 Processor processor. The PLC-5/VME processor has the same program scan time as
the PLC-5 processor. The PLC-5/VME processor has the same extended
instruction set as the PLC-5 processor.

Features of the PLC-5 processor pasent in the PLC-5/VME
processor are:

= Plls
» EEPROM memory module
= logical rack 0 (128 less I/O points)

Features of the PLC-5/VME processor not present in the PLC-5
processor are:

= The PLC-5/VME processor defines a special data file called the “VME
status file.” This file gives ladder programs the ability to control and
monitor certain VMEbus state.information.

» The ladder MSG instruction is extended to allow ladder programs to
perform VMEbus data transfers and generate VMEbus interrupts.

Finally, features present in both but implemented or represented
differently. are:

= The serial port (channel 0) on the PLC-5/VME processor is RS-232C
only (not-configurable for RS-422 and RS-423).

« Different batteries are used (cat. no. 1770-XYV).

= The PLC-5/VME processor has a memory-protect switch. In the PLC-5
processor, the equivalent switch is on the 1771 I/O rack.

Compatibility with-the The PLC-5/VME processor retains a significant amount of compatibility

6008-LTV Processor with the 6008-LTV processor. This eases the task of converting 6008-LTV
ladder programs and CPU driver programs to use with the PLC-5/VME
processor.

6008-LTV ladder programs may need editing because the VME status file
in the PLC-5/VME processor is different in several ways from 6008-LTV
status file. The 6008-LTV ladder programs that access the VME status file
will need to be changed.

1-9

Chapter 1

Overview

Table 1.B
Comparison of 6008-LTV and PLC-5/VME Processor Attributes
Attributes 6008-LTV PLC-5/VME Comments

VME slots 3 2
Bus arbitration No Yes or No (user configurable) Single level arbiter
VME master Yes Yes
VME Slave Yes Yes
Global memory (bytes)? 1K short, 4K short or standard | 64K standard Global m%ry is selectable
Programming and downloading No Yes With 6200 series software
over backplane release 4.4 and later
Saving over backplane No Yes With 6200 series software

pLC data table to global memory trans-

Continuous-copy command

Continuous-copy and/or ladder

release 4.5 and later

fer method MSG commands

Asserts VME SYSFAIL Yes Yes

PLC resets upon VME SYSRESET Yes Yes \

Bus request line 0,1,2,3 1,3

Bus release ROR, RWD, ROC ROR,RWD, ROC

Continuous-copy command file size 500 words 1000 words

Ladder MSG file size N/A 1000 words

RS-232 port No I Yes

Remote 1/O baud rate 57.6k baud fixed 57.6k, 115.2k, 230.4k baud configurable
Remote /O fractional rack addressing No a2 Yes

1 Al of the 6008-LTV's global memory could be configured to be totally within short memory. Because the PLC-5/VME processor’s global memory would totally fill all of
VME short memory, it can only be selected with a standard memory address. This may be a consideration when replacing a 6008-LTV with a PLC-5/VME processor.

1-10

There are some areas of potential incompatibility to consider:

= The configuration/control/status/message registers are slightly different,
requiring changes to the host driver program.

= The LTV VME global memory can be selected to be in short or standard
memory space. The PLC-5/VME processor’s global memory can only
be selected to be in standard memory. Because of this, the 6008-LTV
will accept address modifiers 2D, 3D 29 and 39. The PLC-5/VME
processor will only respond to address modifiers 3D.

= The 6008-LTV supports logical rack address 0; the PLC-5/VME
processor does not.

= The 6008-LTV has a status/configuration bit to enable or ignore ROC
(release on clear). The PLC-5/VME processor will always respond

to ROC.

Chapter 1

Overview

= The PLV-5/VME processor status files in the processor status area are
different in several ways.

= When floating point values are converted to integer, they are rounded
differently. 6008-LTV rounds 0.5 to the next highest integer, the
PLC-5/VME processor rounds to the nearest even integer.

CPU driver programs are affected in these ways:

= The low-level protocol for how commands are given:to the processor
and how command-sending errors are reported is-significantly different.
However, the higher-level interfaces (e.g., the commands themselves)
are compatible.

= The manner in which the VME setup interface parameters are
configured is significantly different:

In the: The informﬁoﬁs in the:

PLC-5/VME processor configuration registers in the A16 space.

6008-LTV processor ﬁ@!aFO” global memory in the A16 space.

See chapter 3 for more information.

1-11

Chapter

Installation

Chapter Objectives Read this chapter to learn how to set the switches in your PLC-5/VME
processor and install it into a VMEbus chassis.

See the Classic 1785 PLC-5 Programmable Controller Hardware
Installation Manual, publication 1785-6.6.1 for more-information about
installing PLC-5 family processors.

Compliance to If this product has the CE mark it is approved for installation within the
European Union Directives European Union and EEA regions. It has been designed and tested to meet
the following directives.

EMC Directive

This product istested-to meet Council Directive 89/336/EEC
Electromagnetiic Compatibility (EMC) and the following standards, in
whole or in part; documented in a technical construction file:

e EN-50081-2EMC — Generic Emission Standard, Part 2 — Industrial
Environment

| * ~EN 50082-2EMC — Generic Immunity Standard, Part 2 — Industrial

Environment

This product is intended for use in an industrial environment.

Low Voltage Directive

This product is tested to meet Council Directive 73/23/EEC Low \oltage,
by applying the safety requirements of EN 61131-2 Programmable
Controllers, Part 2 — Equipment Requirements and Tests.

For specific information required by EN 61131-2, see the appropriate
sections in this publication, as well as the following Allen-Bradley
publications:

* Industrial Automation Wiring and Grounding Guidelines For Noise
Immunity, publication 1770-4.1

* Enhanced and Ethernet PLC-5 Programmable Controller User
Manual, publication 1785-6.5.12

* Guidelines for Handling Lithium Batteries, publication AG-5.4
* Automation Systems Catalog, publication B111

2-1

Chapter 2

Installation

| Handling the Processor

Setting the Switches

Memory
protect

DH+ station ~ OWer-
number up Test

/—/\ﬁ

AREEE@]

1 2 3 4 5 6 7 8

SW1 set of switches

2-2

t
\

(off)

Down
(on)

The processor is shipped in a static-shielded container to guard against
electrostatic damage. Electrostatic discharge can damage integrated
circuits or semiconductors in the processor module if you touch backplane
connector pins. It can also damage the module when you set configuration
plugs or switches inside the module. Avoid electrostatic damage by
observing the following precautions.

» Remain in contact with an approved ground point while handling the
module (by wearing a properly grounded wrist strap).

= Do not touch the backplane connector or connector pins.

= When not in use, keep the module in its static-shielded container.

Before installing the PLC-5/VME processor, you need to make some
decisions about its configuration.and operation and set the switches on the
circuit board accordingly. You need to know:

= DH+ station (node) number

= Memory protection-—whether you want the processor’s program
RAM protected

= Location of configuration registers in VMEbus A16 address space

= Systermn controller—whether you want the processor to serve as the
VMEDbus slot-1 system controller

= VMEDbus request level—whether you want the processor to request
access to the VMEDbus at level 3 or level 1

Figure 2.1
Switch Location

Front plate ———>

BEEBEEEE BEEEBEEE

Table 2.A and Table 2.B describe the switch settings for SW1.

Chapter 2

Installation

Table 2.A
SW1 Set of Switches
Switches 1-6 Switch 7 Switch 8
DH+ station number for channels | Unused (off) | Memory protect.
1A and 0 (see Table 2.B) If on, RAM memory protect is enabled.
Table 2.B
Station Numbers SW1 (Switches 1-6)
Station LSD MSD
Number i
(Octal) 1 2 3 4 5 6
‘ |
0 on on on on on on
1 off on on on on on
2 on off on on on on
3 off off on on on on
‘ .
N - . .
77 off .off ‘ off off off off

Table 2.C and Table 2.D describe the switch settings for SW2.

Table 2.C

SW2 Set of Switches
Switches 1-3 Switch 4 Switch 5 | Switch 6 Switch 7 | Switch 8
A16 address range of the | If on, the processor functions as the VMEbus | Unused | VMEbus request level. Unused | Unused
configuration registers. system controller,and no other VME cards (off) If switch 4 is OFF. switch 6 on defines (off) (off)
See Table 2.D. should attempt to be the system controller. the bus request level as 3. If switch 6

Important: The PLC-5/VME processor must
be in the left-most slot of the VME chassis.

Seepage 3-1 for a description of the
system controller.

L6 U -

is OFF, the bus request level is 1.

If switch 4 is ON, the bus request
level is 3 independent of the setting
of switch 6.

Important: Switch 6'is meaningful only if switch 4 is off.

1 SW2, position 7, now.controls whiether the PLC-5 processor makes a VME self-reference in its POST test. If you set SW2, position 7 to OFF (up position), then the VME will make

self-references as it did before series C, revision K. If you set SW2, position 7 to ON (down position), then the POST test will skip all VME self-references, causing the following effects:
- The PLC-5 processor cannot test its bus-master hardware.
- The PLC-5 processor cannot determine its own unique logical address and assumes its ULA is FOH regardless of how you set SW2, positions 1-3.
- The VME status file ULA field (word 1, bits 3-15) will always contain 000, regardless of how you set SW2, positions 1-3.

2-3

Chapter 2

Installation

Table 2.D
System Address Range SW2 (Switches 1-3)
controller ,
1
Unused ULA 1 ‘ 2 3 | Al6 Address Range
(off) 0 Jon |on |on |FCOO-FC3F (hex)
IReqluest 1 |off |on |on |FCA40-FCTF
eve
2 on |off |on FC80-FCBF
Unused
Al6 (off) 3 off |off |on FCCO-FCFFi
address l klr;fl)lsed 4 on on |off | FDO0-FD3F
range 0
5 off |on |off |FD40-FD7F
vy v
6 on off off FD80-FDBF
‘ Up 7 off |off - off" /FDCO-FOFF
(off) il bl

AN i

2 3 4 5 6 7 8

SW2 set of switches

Configuring the VME
Backplane Jumpers

Five backplane jumpers

'

O

O

O
HEEN -

=]

O

=]

0oo ool
000 ooo
0o ool
000 ooo
000 ool
000 ooo
ooo| |0
Leﬁ ooo ooo R|ght
000 ooo
connector |3es| | |°0a| I connestor
000 ooo
000 ooo
000 ooo

1 Unique Logical Address is used by the 6200 series
' Down programming softwate to determine the A16 base address of

the PLC-5/VME processor’s registers..
(on) T AN

The VMEDbus contains several daisy-chained control signals. Almost all
VMEDbus backplanes contain jumpers for these control signals to allow
systems to operate with'empty slots. Failing to install these jumpers
properly is a corrimon source of problems in configuring a new
VMEDbus system.

There-are five jumpers per VME slot, one for each of the four bus-grant
arbitration levels and one for the interrupt-acknowledge daisy chain.
Depending on the backplane manufacturer, the jumpers can be on the
rear pins of the J1 connector or alongside it on the front of the backplane.
The PLC-5/VME processor uses two slots. Based on what is in the VME
slot, install or remove the backplane jumpers as follows:

VME Slot Content Five Backplane Jumpers

PLC-5/VME processor’s left slot | Remove

Backplane PLC-5/VME processor’s right slot | Install
Empty slot Install
0 Other VME module Consult manufacturer’s literature
P
s 00
gl
J Other VME module

0
Note: Consult T PLC-5/VME processor

manufacturer’s Empty
literature. CPU

2-4

Inserting the Processor
into a Chassis

Grounding

Chapter 2

Installation

You insert the PLC-5/VME processor in two adjacent slots in a 6U
(full-height) VMEDbus chassis.

off. The PLC-5/VME processor is not designed to be inserted

Q ATTENTION: Make sure that your VME system is powered
or removed from a live system.

ATTENTION: Avoid touching the circuit board
and connectors.

After sliding the processor into the VME chassis using its cardguides, use
firm pressure on the top and bottom . handles of the processor to make its
P1 connector fit firmly into the connector on the backplane. Tighten the
screws in the top and bottom of the front panel to prevent your
PLC-5/VME processor-fram loosening.

19556

Allen-Bradley makes specific recommendations for properly grounding its
racks so that their operation is as safe and error-free as possible. VME
systems, on the other hand, may have no formal specifications for
grounding the VME chassis frame. Allen-Bradley recommends that you
ground the VME chassis frame and that you connect the logic ground
(common) of the VME power supply to the chassis frame’s earth ground.

2-5

Chapter 2

Installation

Determining Power-Supply
Requirements

Connecting to Remote 1/O

2-6

The specific procedure for grounding a VME chassis varies depending on
the style of the chassis. Read the instructions found in the Classic PLC-5
Family Programmable Controllers Installation Manual, publication
1785-6.6.1 for information on how Allen-Bradley racks are grounded, and
try to ground your VME chassis frame in a similar way.

your VME power supply should not float with respect to earth
ground. Connect the power supply’s logic ground (commaon)
for the 5V supply before connecting the PLC-5/40L processor
to a 1771-ALX adapter. Also, use a single point of ground
between the VME chassis and the extended-local I/O system to
ensure proper performance.

e ATTENTION: If you are using a PLC-5/V40L processor,

The PLC-5/VME processor draws 4 A (maximum)—3.2 A (typical)—from
the VME power supply. (The.processor also monitors the ACFAIL signal
on the backplane to determine when the +5 VDC supply is within
tolerances. The VME power supply must assert ACFAIL at least 9 ms in
advance of the +5VDC supply dropping beneath 4.75V or memory
corruption and processor fault occurs. Therefore, make sure that your
power supply has ACFAIL capability.

You must use a Safety Extra Low Voltage (SELV)- or Protected Extra Low
\Voltage (PELV)-certified power supply with the VME processor to comply
with Low Voltage directive requirements.

Use Belden 9463 twin-axial cable (cat. n0.1770-CD) to connect devices to
a remote /O link. To connect a remote /O link, do the following:

To connect a remote 1/O link, you must: See page:

Make sure the cables are the correct length 2-6

Prepare the cable 2-7
Make the remote I/O connections 2-7
Terminate the link 2-8

Make Sure that You Have Correct Cable Lengths

Verify that your system’s design plans specify remote 1/0O cable lengths
within allowable measurements.

Chapter 2

Installation

A remote 1/0 link using this communication rate: Cannot exceed this cable length:
57.6 kbps 3,048 m (10,000 ft)

115.2 kbps 1,524 m (5,000 ft)

230.4 kbps 762 m (2,500 ft)

Prepare the Cable

Cut the cable according to the lengths you need. Route the cable to
the devices.

Make Remote I/O Connections

Use Figure 2.2 when connecting the remote 1/0O cable to PLC-5 processors
and remote 1/O adapter modules.

Chapter 2

Installation

Figure 2.2
Remote I/0 Terminal Connectors

To connect remote 1/0 cable, do the following:

1. Run the cable (1770-CD) from the processor to each remote 1/O
adapter module or processor in the remote I/O system.

2. Connect the signal conductor with blue insulation to the 3-pin
connector terminal labeled 1 on the processor and to each remote
I/O adapter module (or PLC-5 adapter) in the remote I/O system.

3. Connect the signal conductor with clear insulation to the 3-pin
connector terminal labeled 2.

4. Connect the shield drain wire to the 3-pin terminal labeled SH.

5. Tie wrap the remote 1/O network cable to the chassis to relieve strain 8 8
on the cable.
O — Battery Insialled
Blue 1 Line 1 I [O[M[T]
= Shield 2 Shield > cable
&3 Clear 3 Line2 j
4.Line 1 Cable for
5 Shield daisy-chain
6 Line 2 configuration Chan 1
Blue , ©) 0O
Shield 7 No Connection o oo
Clear o Remote 1/0 8 No Connection
° Terminal 9 No Connection o &
©3 1! chan2 Connectors 10 No Connection © (jo /|
© 11 In -1 © L N
12 Ret _ T Reset |
© o]l
(o] Blue
@) !
e © Remote I/0 gr'eld
Terminal - ear
PLC-5/V40B 1771-ASB Remote Connectors
1/0 Adapter Module
Processor channel must be configured for remote 1/O communication. PLC-5/V40L 1959
Terminate the Link
For proper operation, terminate bathds of a remote 1/O link by using the
external resistors shipped with the programmable controller. Use either a
15092 or 8X2 terminator.
If your remote 1/O link: Use this resistor rating: The maximum number of | The maximum number of
physical devices you racks you can scan on
can connect on the link the link
operates at 230.4 kbps 82Q2 32 16
operates at 57.6 kbps or 115.2 kbps and no
devices listed in Table 2.A are on the link

2-8

If your remote 1/O link:

Use this resistor rating:

15092

Chapter 2

Installation

The maximum number of
physical devices you
can connect on the link

16

The maximum number of
racks you can scan on
the link

16

contains any device listed in Table 2.A

operates at 57.6 kbps or 115.2 kbps, and you do
not require the link to support more than 16
physical devices.

As shown in the table above, the terminators you use determine how many
devices you can connect on a single remote 1/O link.

Table 2.A
I/0 Link Devices that Require 150- Q Termination Resistors

‘ Series
All

Device Type Catalog Number

1771-SN
1772-SD, -SD2
1775-SR
1775-S4A, -S4B
6008-SQH1, -SQH2
1771-AS
1771-ASB
1771-AF

1771-DCM

Scanners

Adapters

Miscellaneous All

Figure 2.3
Terminating a Remote I/O Link Using a Resistor

PLC-5/VME processor or remote 1/0 adapter module
as the last device on an remote I/O link.

1/0 adapter
-
Blue — Blue Blue -~
T - = - - el B 150Q
Aot |/00|' o @ Shield | Shield Shield |) o
nother I/O link device Clear > 1 Clear Clear > | . ngQ
] L] \\2]

19334

2-9

Chapter 2

Installation

Connecting an Extended-
Local I/O Link

2-10

Use the extended-local I/O cables. These cables have a single-end
connector on one end and a dual-end connector on the other. The
maximum cable length for an extended-local I/O system is 30.5 cable-m
(100 cable-ft). Connect extended-local /0O adapters by using any of these
cables (Table 2.B):

Table 2.B
Standard Extended-Local I/0 Cables

Cable Length: | Catalog Number:

1m (3.3 1) 1771-CX1
2m (6.6 ft) 1771-CX2
5m(165f) 1771-CX5

Important: You cannot connect or splice extended-local 1/0 cables to
form a custom cable length. For example, if you have a distance of four
meters between two extended-local I/O adapters or between a processor
and an extended-local I/O adapter, you cannot connect two 2-m cables
together. You would have to use the 5-m cable and have the extra meter

as slack.

You must set swiiches on the extended-local I/O adapter module. For
information, see its.installation data, publication 1771-2.200.

Chapter 2

Installation

To make extended-local I/O connections, do the following:

ATTENTION: Turn off power to the extended-local
I/0O adapter module before connecting or
disconnecting extended-local I/0 cables.

Do not apply power to an I/O rack containing
an extended-local /0 adapter module until
all extended-local I/O cables are installed

and connected.

Connect the single-end connector to channel 2 of the processor.

Route the cable to the first extended-local I/O adapter.

Connect the dual-end connector to the extended-local /0O
adapter module. Be sure to screw in the retaining screws tightly.

If the adapter:

Then:

is not the last one
on the link

1. Connect the single-end of a
local I/0 network cable to the
exposed end connector on-the
adapter module. Press and
hold the clips and snap to the
mating connector.

2. Route the cable to the next
adapter and connect the
dual-end connector to it.

is the last one
on the link

Terminate the link by installing the
local /O terminator (1771-CXT) to
the ‘exposed end of the dual-end
connector on the last adapter
module. The system will not run
without it. The terminator is included
with the processor.

PLC-5/V40L processor

I
|
B0l T

—

HE=N

F“*
[==k

/N

ATTENTION: If you are not using any extended-local 1/0
adapter modules, connect the extended-local I/O terminator,
1771-CXT, to channel 2 of the PLC-5/V40L processor to
ensure proper performance of the processor. This terminator is
included with your processor.

2-11

Chapter 2

Installation

Connecting a DH+ Link

l Chan 1
] © O
© @ S
© ©
o o |
[©) © L0
[¢) © é 1 1A
o o °flin
i st 1B
O
@
Chan 0 chang (M|
X Chan 2
© © © ©
PLC-5/v40B PLC-5/V40L
or -5/V80B

2-12

Once you connect the programming device through a local DH+ link to
one processor, the device can communicate with any PLC-5/VME
processor on the link. You can also communicate with PLC-2, PLC-3, and
PLC-5/250 processors connected to the link provided you have the
appropriate programming software installed.

The processor has electrically parallel DH+ connectors.

This processor: Has these electrically parallel DH+ connectors: -
PLC-5/V40B « 8-pin connector for each of channel 1A and 2A
PLC-5/vV80B « 3-pin connector on each of channel 1A and 2A

Channels 1A and 2A must be configured to.support DH+ communication
to use the connectors described ahove. Note that Channel 1A's default
configuration is DH+ communication:

Channels 1B and 2B can also support DH+ communication if properly
configured, but they do not have parallel connectors.

PLC-5/V40L « 8-pin connector for channel 1A
 3-pin connector for channel 1A
Channel 1A must:be configured to support DH+ communication to use the

connectors described above. Note that Channel 1A's default configuration
is DH+ communication.

Channel 1B can also support DH+ communication if properly configured,
but'it does nothave parallel connectors.

Use the Belden 9463 twinaxial cable (1770-CD) to connect the processor
to the DH+ link.

Follow these guidelines while installing DH+ communication links:

= do.not exceed these cable lengths:

- trunkline-cable length—3,048 m (10,000 cable-ft)
- drop-cable length—30.4 m (100 cable-ft)

= do not connect more than 64 stations on a single DH+ link

Chapter 2

Installation

Use the 3-pin connector on the processor to connect a DH+ link.
The connector’s port must be configured to support a DH+
communication link.

ge)

I

You can connect a DH+ link two ways:
« trunkline/dropline—from the dropline to the connector screw
terminals on the DH+ connectors of the processor

« daisychain—to the connector screw terminals on the DH+
connectors of the processor

]

5

——

X0
3
3:
N

To make connections:

1. Connect the signal conductor with CLEAR insulation to the ol o4
3-pin connector terminal 1 at each end of each cable segment. /

2. Connect the SHIELD drain wire to the 3-pin connector SH |
terminal at both ends of each cable segment.

3. Connect the signal conductor with BLUE insulation to the 3-pin

connector terminal 2 at each end of each cable segment.

For more information, see the Data Highway/Data Highway “
Plus/Data Highway Il/Data Highway 485 Cable Installation Manual,
publication 1770-6.2.2.

=l 1

< -«—— Clear

-a—— Shield
-«— Blue

!
L

82Q resistor

PLC-5/V40B or -5/V80B PLC-5/V40L
To connect a programming terminal via the 8-pin S © S ©
connector on a PLC-5/VME processor on.a DH+
link, use the following:
Communication card
to access a DH+ link Cable
1784-PCMK 1784-PCM5 with a . .
1784-CP7 adapter | |
1784-KTX 1784-CP12 with a ‘ ‘
1784-CP7 adapter ! !
OR !) !
1784-CP13 direct L 8-pin 1
connect to the front ! Mini-DIN ‘)
of the PLC-5/VME | , 8pin
1784-CP6 1784-CP6

Programming Terminal

2-13

Chapter 2

Installation

Connecting a Programming You can connect COM1 or COM2 from the programming terminal directly
Terminal to Channel 0 to channel 0 on the PLC-5/VME processor. This serial port supports
RS-232C only.

You can configure channel O to either:

= user mode—Configure channel O to user mode when you are connecting
it to RS-232 devices such as bar code readers, weigh scales, and
message displays. You can then communicate and manipulate
instructions through the ladder-logic ASCII read-and write.

= system mode—This is the default. Use this configuration when
connecting to programming operators interfaces (such as 6200 series
software and ControlView) using a built-in point-to-point protocol.
Although the communication is much like DH+ link, there is no access
to DH+ through Channel 0; therefore, the channel does not require a
DH+ station address. The default baud rate is 2400.

Figure 2.4
Programming Terminal to Channel-0 of a PLC-5/VME Processor

0000000

—
—
—

1784-T47 with 1784-KL/B PLC-5/V40B
or IBM compatible

19541

You can use the following cables to connect to channel O:

Table 2.C

Programming Terminal to Channel 0 Interconnect Cables
If you want to connect: Use:
1784-T53 or IBM AT to channel 0 1784-CP10 or Cable #1
1784-T53 or IBM AT to channel 0 through a modem Cable #6
1784-T47 or IBM XT to channel 0 1784-CP11 or Cable #2
1784-T47 or IBM AT to channel 0 through a modem Cable #6

See Appendix E for more information on cable connections.

2-14

Chapter 2

Installation

Installing, Removing, and If the processor is not powered, the processor battery retains processor

Disposing of the Battery memory. The appropriate battery for your processor is shipped with the
processor and requires special handling. See Allen-Bradley Guidelines for
Lithium Battery Handling and Disposal, publication AG-5.4.

processor, which can cause electrostatic discharge. See

c ATTENTION: Installing the battery requires handling the
Chapter 1 for details.

The battery indicator (BATT) warns you when the battery is low. The
indicator first lights when the processor has 10 days of battery back-up
power remaining. The LED will only light when the processor is powered.

Installing or Removing the Processor Battery
To install or remove the battery (cat. no. 1770-XYV), follow these steps:

Remove the processor’s battery cover.
Locate the batiery.

Install. or remove the battery according to Figure 2.5.

Figure 2.5
Installing” a Processor Battery (cat. no. 1770-XYV)

s

Make sure that the positive (+) side of
the battery is on the right hand side and
the negative (-) side of the battery is on
the left hand side.

Slide the battery into or out of
the processor.

19545

4. Replace and secure the battery cover.

5. Write the date that you installed the battery on the battery cover.

Important: You can insert or remove the battery without powering down
the processor. If you do not want to lose your prograake sure that the
processor is powered when replacing the battery

2-15

Chapter 2

Installation

Disposing of the Battery

Refer to the Allen-Bradley Guidelines for Lithium Battery Handling and
Disposal, publication AG-5.4.

Do not dispose of lithium batteries in a general trash collection when their
combined weight is greater than or equal to 1/2 gram. A single 1770-XYV
battery contains .65 grams of lithium. Check your state and local
regulations that deal with the disposal of lithium batteries.

Q ATTENTION: Follow these precautions:
= Do not incinerate or expose the battery to high temperatures.

= Do not solder the battery.or leads; the battery could explode.

= Do not open, puncture,.or crush the battery. The battery
could explode; and toxic, corrosive, and flammable
chemicals could be exposed.

= Do not charge the battery. An explosion may result, or the
cell may-overheat and cause burns.

= Do not short positive and negative terminals together. The
battery will heat up.

2-16

Chapter Objectives

System Controller

Chapter

VMEDbus Interface

Read this chapter to understand the basic low-level interface to the
PLC-5/VME processor. The orientation of this chapter is based on a driver
program running on a separate CPU module comimunicating with

the processor.

Unless otherwise noted, all multiple-byte nhumerical fields are represented
in big-endian (Motorola) format, meaning that the most-significant data
byte appears in the lowest-addressed byte.

You can configure the PLC-5/VME processor as a VMEbus system
controller by installing it in the ieft-most slot in the VME chassis. Its
system controller functions-are limited, so this mode of operation is
intended for configurations where there is no more-capable CPU in
the system.

As a system controller, a PLC-5/VME processor is a single-level (SGL)
arbiter—it recognizes requests on level 3 only. In this mode, it also
generates the 16 MHz SYSCLK, begins the IACK daisy chain, and has a
bus timer. The bus timer timeouts any VMEbus transaction that asserts a
data strobe (DSO or DS1) for longer than 93.75-125 microseconds. The
PLC-5/VME processor never asserts BCLR.

When it is not the system controller, you can configure the PLC-5/VME
processor to request the VMEbus on levels 3 or 1.

You select the system controller mode and bus request level by using
a switch (see page 2-3).

3-1

Chapter 3

VMEDbus Interface

Bus-Release Modes Two software-selectable bus-release modes are provided:

When set to: The PLC-5/VME processor:

ROR releases control of the VMEbus immediately after the current data-transfer
operation if it sees one of the bus-request lines asserted; otherwise it remains
“parked” on the bus.

RWD once granted the bus, keeps ownership of the bus for the duration of a series of
contiguous data transfers (e.g., a copy operation), after which it relinquishes
control of the bus (i.e., does not stay parked on the bus).

There is one exception—when set to RWD, the PLC-5/VME processor
always relinquishes the bus after the current data-transfer operation

if BCLR is asserted. Thus, when used with-a priority arbiter, the
PLC-5/VME processor honors higher-priority requests even when in
the midst of a contiguous copy in.RWD maode. To configure your
system for this latter case, the PLC-5/VME processor must be using
bus-request level 1 and the separate system controller must be set to
priority arbitration.

VME LEDs Three of the front-panel LEDs show VMEDbus state information:

When this LED is Iit:i ‘Fmeans that:

SYSFAIL the PLC-5/VME processor is driving the VMEbus SYSFAIL signal.

master-access the PLC-5/VME processor is performing a VMEbus cycle.

slave-access a VMEbus master is performing an A24 slave access to the
PLC-5/VME processor.

Important: The PLC-5/VME processor does not respond to the VMEbus
SYSRESET signal if it is in a faulted state. In a faulted state, only a
power-on reset resets the processor.

Chapter 3

VMEbus Interface

VME Signal Usage Table 3.A shows the usage of the VMEbus signals on the P1 connector.
Table 3.A
VMEDbus Signals on the P1 Connector
Row A Row B Row C
Pin Name Uset Name Usel Name Uset
1 D00 10 BBSYC 10 /D08 10
2 |D01 10 BCLRT | ' D09 10
3 D02 10 ACFAILD [/D10 10
4 |DO3 10 BGOINU [D11 10
5 D04 10 BGOOUTH oH D12 10
6 D05 10 BGLINT - D13 10
7 D06 10 BG1OUTV 0 ‘D14 10
8 D07 10 BG2aN® I D15 10
9 GND G BG20UT™. . 0oF GND G
10 | SYSCLK oH BGAN |1 SYSFAILY 10
11 | GND G BG30OUT" 0 BERRT 10
12 |DpsiH 10 BRO SYSRESETH |10
13 | Dso” 0 BRI 0 LWORD® 10
14 |WRITED 0 BR2Y AM5 10
15 GND G~ BR3” 10 A23 10
16 | DTACK- o AMO 10 A22 10
17 | GND G AM1 10 A21 10
18 ASH 10 AM2 10 A20 10
19 -~ GND G AM3 10 A19 10
20 | IACKD 10 GND G A18 10
21 | IACKIN [SERCLK AL7 10
22 |IACKOUTH 0 SERDATH A16 10
23 | AM4 10 GND G Al5 10
24 | A07 10 IRQ7" 10 Al4 l6)
25 | AO6 10 IRQ6- 10 A13 10
26 | A05 10 IRQ5™ 10 A12 10
27 | AD4 10 IRQ4H 10 AlL 10
28 | AO3 10 IRQ3- 10 A10 10
29 | A02 10 IRQ2- 10 AQ9 10
30 A0l 10 IRQ1U 10 A08 10
31 -2V P +5VSTDBY +12V P
32 |45V P +5V 3 +5V P
[}

indicates a low true signal.

How the signal is used: | = input; O = output; 10 = input/output; P = power; G = ground;
blank = unused and unconnected

Only if the PLC-5/VME processor is configured as the slot-1 system controller. Otherwise logically
unconnected.

BGOOUT and BG20UT are driven directly by the corresponding BGxIN*'s. This is done so that
you need not worry about the VMEbus backplane jumpers for the leftmost slot occupied by the
PLC-5/VME processor. You should not install the five bus-grant and IACK daisy-chain jumpers in
the leftmost slot.

3-3

Chapter 3

VMEDbus Interface

Configuration Registers The configuration registers are a standard way of identifying, configuring,
controlling, and monitoring the PLC-5/VME processor as a VMEbus
device. They are mapped into the VMEbus A16 address space at a
location defined by switches 1-3 of SW2. For example, if these three
switches are set to ON, the first register (the ID register) is at address
FCOO0 (hex).

The registers are shown in Figure 3.1 and described individually thereafter.

Figure 3.1
The Eight Configuration Registers
offset 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 offset
ID Register C F E C
00 1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0 01
Device-Type Register 7 F E 8
02 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 03

Status/Control Register

04 GRE 1 1 | SYSF| 1 |[NOCV| 1 17 | SRIE | RELM| MYAS| 1 RDY | PASS | NOSF| RSTP 05

Offset Register

06 SLAVE BASE 1 1 1 1 1 1 1 1 07

Command Control Register

08 WRDY| LOCK| ERR 1 |COPY-TO-STATE| COPY-FR-STATE| ERROR CODE 09

Command Control and Lock Register

0A WRDY| LOCK| ERR 1. |COPY-TO-STATE| COPY-FR-STATE ERROR CODE 0B

Command High Register

0c 0D

Command Low Register

0E OF

Important: The system repeats these registers eight times; you can use
only the first eight registers as the configuration register.

These registers are described in detail below. Where a bit position has
been described as a 0 or 1, the bit is a read-only bit and writing to it has
no effect.

Chapter 3

VMEbus Interface

Unless otherwise noted, register bits:

» are initialized to O at reset.
» directly control the associated hardware function, so that changing a
register bit has an instantaneous effect on the function it controls.

The ID register, whose value is CFEC (hex), and the next (device-type)
register, 7FE8(hex), uniquely identify the PLC-5/VME processor.

The status/control register contains status and control bits, primarily for
use by a separate VME CPU (see Table 3.A).

Table 3.A
Status/Control Register
Bit |Register | Function Definition N
15 | GRE Global RAM If set by an application program (1), the PLC-5/VME processor is enabled as an VMEbus A24 slave. This bit is
enable not altered by the PLC-5/VME firmware. The 64K of global RAM is enabled by this bit.
12 |SYSF SYSFAIL The PLC-5/VME processor drives the VME SYSFAIL line and the SYSFAIL LED on the front panel while this bit
is 0. This bit is set (to 1) by the PLC-5/VME processor firmware at initialization and not altered thereafter by the
PLC-5/VME processor unless a hardware failure occurs. One purpose of this bit is to allow a separate VMEbus
CPU to determine which VME module is‘asserting SYSFAIL.
10 | NOCV No check VME | The VME status file, a file in the PLC-5/VME processor memory holds certain state information for compatibility
status file with the 6008-LTV processor. As in thie 6008-LTV processor, ladder programs can modify certain parts of the
VME status file. If NOCV is 0, the PLC-5/VME processor checks its VME status file every scan loop to see if any
parameters have changed. This will increase your processor scan and communication time. You should
initialize this bit to 0 if you are changing the status file from a ladder program or if you are using 6200 software
from an external device. 'See Chapter 7 for more information.
7 SRIE SYSRESET If 1, VME SYSRESET causes a full hardware reset of the PLC-5/VME processor. If reset, VME SYSRESET is
input enable ignored by the processor, except for resetting its VMEbus interface and terminating any current VMEbus
operations. This bit is reset by a hardware reset and set by PLC-5/VME processor firmware early in its
initialization process.
6 RELM Bus release If 1, the bus release mode is ROR, otherwise it is RWD. This hit is not altered by the PLC-5/VME processor.
mode Bus release mode only applies to PLC-5/VME processor that behaves as a VMEbus master.
5 MYAS My address When 0, the PLC-5/VME processor is in the midst of VMEbus master transfer. This state bit is not intended for
strobe use by other masters; it has meaning to only the PLC-5/VME processor’s firmware.
3 RDY Ready If 1, the PLC-5/VME processor is ready to accept commands. RDY and PASS are alerted at the same point by
‘ the PLC-5/VME processor.
2 PASS Self-test This bit is set by the PLC-5/VME processor after initialization if its self-test completes successfully. The bit is not
passed altered thereafter by the PLC-5/VME processor. If RDY=1 and PASS=0, the PLC-5/VME processor has failed its
self-test.
1 NOSF SYSFAIL inhibit | If 1, the PLC-5/VME processor cannot assert SYSFAIL. This bit is not altered by the PLC-5/VME processor
0 RSTP Reset If 1, the PLC-5/VME processor is in the reset state. During the reset state, the PLC-5/VME processor is inactive

and pending interrupts and bus requests are cleared. This register set is active and can be accessed by other
VMEbus devices. This bit is not altered by the PLC-5/VME firmware.

Changing it from 1 to 0 releases the PLC from its reset state and it follows its normal power sequence (if the
PLC-5/VME processor is not in a faulted state).

Attention: This bit causes the processor to reset and the 1/0 to stop communicating. Unpredictable operation
may occur with possible damage to equipment and/or injury to personnel.

3-5

Chapter 3

VMEDbus Interface

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 offset

Offset Register

SLAVE BASE 1 1 1 1 1 1 1 1 07

The SLAVE-BASE field in the offset register defines the A24

mapping of the PLC-5/VME processor; register bits 15-8 are the values of
the VME address bits A23-A16. This field is not altered by the
PLC-5/VME processor.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 offset
Command Control Register
WRDY| LOCK| ERR 1 |COPY-TO-STATE |COPY-FR-STATE ERROR CODE 09
Command Control and Lock Register
WRDY| LOCK| ERR | 1 |COPY-TO-STATE |COPY-FR-STATE ERROR CODE 0B

The command-control register-and command-control-and-lock register
contain state bits (Table 3.B) associated with the command register. They
are identical except how they read the command-control-and-lock register
and affect the state of the LOCK bit. The command-control-and-lock
register and the LOCK bit are provided to support multiple independent
senders of commands to the PLC-5/VME processor; you can ignore both
the register and the bit if you do not need this facility.
Table 3.B
Registers Containing State Bits

Bit Register Function Definition

15 WRDY Wirite ready If 1, the command register is armed for an incoming command.

A write to the command-low register clears this bit.
14 LOCK Command register lock If 1, the command register has been locked.
If clear, the command register can be locked for the sending of a command.
13 ERR Protocol error If 1, a protocol error occurred associated with the last command received.
11-10 |CORY-TO-STATE The current state of the 00 None is enabled

continuous-copy-to-VME
operation

01 Currently enabled and no errors encountered
10 Currently enabled but a noncatastrophic error has occurred
11 Shutdown because a catastrophic error has occurred

9-8 COPY-FROM-STATE

The current state of the
continuous-copy-from-
VME operation

Same encoding as above.

7-0 ERROR CODE

Error code

If ERR=1, this field is a code describing the error.
See specific requesting command types or Appendix D for a list of error codes.

3-6

Chapter 3

VMEbus Interface

WRDY is used by another VMEbus master to determine whether or not the
PLC-5/VME processor is ready to receive a command. The VME master
processor should check that WRDY is set before it writes a command
value to the Command High/Command Low registers. This prevents the
VME master processor from accidentally overwriting a previously written
command.

The Command High/Command Low registers are a 1-deep FIFO. A

WRDY bit of 1 indicates that the command register FIFO.is empty and that
the VME master processor may write a commangd value into the command
registers. Before the write cycle is completed, the processor hardware
clears the WRDY bit to indicate that the command register FIFO is full and
so that no other commands are sent. When the processor reads the FIFO to
process the command, the FIFO is emptied and the WRDY bit is
automatically set so that the processor can send a new command.

When a single PLC-5/VME processor is controlled by two or more master
processors, the LOCK bit acts as.a semaphore to prevent the processor
from accidentally overwriting another processor’'s commands.

A master processor attempts to get the LOCK bit by reading the
Command/Controi/Lock register. If the LOCK bit is 0, that processor has
exclusive contral. This is the only processor thats sees a LOCK bit value of
0; all other processors reading the Command/Control/Lock register see a
value of 1. The master processor executes its command and then clears the
LOCK bitin the Command/Control/Lock register so that another processor
can-execute its command.

15 14 13 10 9 8 7 6 5 4 3 2 1 0 offset
Command High Register
0D
Command Low Register
OF

Commands

Commands are the primary form of communication from a separate
VMEDbus CPU to the PLC-5/VME processor. A command is sent by
placing one of the following 32-bit values in the command registers.

31 24 23 0

000000001| Address of command block in VME A24 space

31 24 23 16 15 0

000000001 Addr of cmd blk in VME A16 space

3-7

Chapter 3

VMEDbus Interface

If you designate: | The PLC-5/VME processor accesses the command block as an:

A24 A24 access with the 3D (standard supervisory data access) address modifier.

Al6 A16 access with the 2D (short supervisory access) address modifier.

One exception in the situation where A24 is designated:

When you enable the PLC-5/VME processor’s slave memory and the
A24 address resides within the slave memory, the PLC-5/VME
processor accesses the memory locally. Every time.the PLC-5/VME
processor is given an A24 address (e.g., of a command, within a
command), it determines whether or not the address falls within its
enabled slave memory. It does not take the implicit or explicit length of
the data item or structure into account.

Important: Data structures must be wholly within or without the
slave memory; data structures.cannot be “half in and half out” of the
slave memory.

Also, the PLC-5/VME- processor assumes it can do all master accesses to
commands as D16 and DOB(EO). For data transfers, D16 versus DO8(EO)
is programmable (to allow access to 8-bit I/O devices).

The diagram below shows the remainder of the command structure. The
message points to a command block, which identifies the type of

commaid. Some commands are wholly contained within the command
block. Others, specifically the PCCC commands, are contained in a
separate command packet. Such commands typically have data returned as
a reply; space for the reply packet is assumed to be allocated by the
sending VME CPU at the end of the command packet.

S 7
\
Address in command register Command block |~ — > Command packet } 4-248 bytes
I _
4 bytes 32 bytes | \
} Reply packet | 4-248 bytes
\
L _

The command-processing state of the PLC-5/VME processor can be
observed in several ways. After a command has been sent, readiness of the
command register indicates that processing of the previous command

has started.

Two ways are provided to detect completion of command processing.
The command block contains a response field into which a success or
error code is placed upon completion of the command. Optionally,
the PLC-5/VME processor can signal an interrupt at the end of
command processing.

3-8

Chapter 3

VMEbus Interface

The structure of the command block is shown below:

Word 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

0 Command word
1 Response word
2 Cmd interrupt level
3 Command interrupt status/ID
4
Command dependent
15
Word | Command Description o
0 Command word Specifies the type of command and implicitly specifies whether there is an associated command packet.
1 Response word The sender should set this to 0. PLC-5/VME processor stores a nonzero value in this word when
completion of command processing occurs. The value 00FF de-notes successful completion. Other
values are used for errors.
2 Command interrupt | If nonzero, specifies that PLC-5/VME processor should generate a VMEbus interrupt immediately after
level storing into the response word after comimand completion.
000 specifies no interrupt,
001 specifies interrupt level 1,
010 specifies level 2,
111 specifies level 7.
3 Command interrupt | The status/ID value returned during an interrupt-acknowledge cycle for the above interrupt.

status/ID

3-9

Chapter Objectives

Ladder Messages

Chapter
/

Ladder-Program Interfaces

Read this chapter to help you understand how to interact with the VMEbus
environment from your ladder program.

The PLC-5/VME processor allows ladder programs to perform direct
VMEDbus read and write operations as well as to generate VMEbus
interrupts through the MSG instruction. This is.the same data instruction
that is used for Data Highway, and it is programmed the same way. Four
messages are available:

= Copy to VME

= Copy from VME

= Send VME interrupt

= Check VME status-file

To enter a VME.message instruction, use your programming software to
edit the MSG control block. You will need to do the following:

= specify a control block address for the MSG instruction
» select ASCII as the message type

Important: You cannot use indirect addresses for the control-block
address in an MSG instruction.

= enter channel 3A as the channel/port number
= enter the appropriate VME command and accept the parameters you've
entered in the software

An internal processor interprets the ASCII string entered to determine the
VME operation to complete. The syntax for the ASCII strings is
as follows:

4-1

Chapter 4

Ladder-Program Interfaces

Table 4.A
Four Ladder Messages
Message ASCII Syntax Page
Copy to VME CTV # Xf : e vmeaddr width numelts 4-3
Copy from VME CFVvmeaddr width # Xf . e numelts 4-4
Send VME interrupt SVI vmeint statid 4-5
Check VME status file | CSF 4-5
where:
X is the file type.

File Type Words per Element

counter C 3

floating point F 2

input I 1

integer N 1

output 6] 1

control R 3

staius S 1

timer T 3

ASCII A 1

BCD D 1
f is the file number—aO0 is the output image; 1 is the input

image; 2 is the status file; and 3-999 are any type except
input, output, and status files.

If the Xfile type is I, O, or S, thé parameter is optional.

e is the element number—0-192 octal for I/O files, 0-127
decimal for the status file, 0-999 decimal for all other files.

vmeadadr is the A16 or A24 VME address. A 6-character hexadecimal
number denotes an A24 address, which generates a 3D
address modifier. A 4-character hexadecimal number denotes
an A16 address, which generates a 2D address modifier on
the VMEDbus.

Chapter 4

Ladder-Program Interfaces

width is the width of VME transfers.

Width Denotes

D16 16-bit transfers

D08 8-bit transfers (even/odd)

D080 8-bit transfers (odd only)

D08B 8-bit transfers (even or odd depending on the starting VME address)

numelts is the number of elements to be transferred (1-1000 decimal).
vmeint is the VMEDbus interrupt number (1-7).
statid is the interrupt status/ID, a two-character hexadecimal

number given to the‘interrupt handler during the interrupt
acknowledge cycle.

You can use indirect addressing for thande parameters. Indirect
address format is:

Xf: e

where:

X, f, ande are as specified above, except thande cannot specify
indirect addresses.

Copyto VME

This message tells the processor to read the specified amount of data from
the specified file and write it using one or more VMEbus write operations.
As with the continuous-copy operations, if the address falls within the
enabled VMEDbus slave memory of the PLC-5/VME processor, the data is
written into this dual-port memory directly without doing actual VMEbus
operations.

Example 1: CTV#N8: 10 AO0000 D162
Example 1 reads elements 10 and 11 from file N8 and writes them in two

D16 writes to addresses AO0000 and A0O0002 in the VME A24
address space.

4-3

Chapter 4

Ladder-Program Interfaces

Example 2: CTV#N7: 0 FFO1 DO8O5

Example 2 reads the lower byte of elements 0 through 4 of file 7 and writes
them to addresses FFO1 through FFO9 (odd bytes only).

Data in PLC Processor Result of Transfer to VMEbus
Address Data (hex) Address Data ‘ Address
N7:0 0044 FFO0 00 44 ‘ FFO1
N7:1 0055 FF02 00 55 | FF03
NT:2 0066 FFO4 0066 ' FFO5
N7:3 2077 FF06 00 77 FFO7
NT:4 3088 FFO -~ | 0088 FF09
Copy from VME

This message tells the PLC-5/VVME processor to read the specified amount
of data from VMEbus memory using VMEbus read operations and write it
into the specified file. As with the continuous-copy operations, if the
address falls within.the-enabled VMEbus slave memory of the

PLC-5/VME processor, the data is read from this dual-port memory
directly without doing actual VMEbus operations.

Example 1.~ CFVD004 DO8#N8. 0 4

Theexample above performs eight D08 read operations beginning at VME
address D004 and then writes the data as four elements (0-3) in file N8.

Example 2: CFVFF01 DO8B#N7 0 3

Example 2 reads three consecutive bytes starting at FFO1 in the VME Al16
address space and writes the data into three elements in file N7:0.

Data on VMEbus Result of Transfer to PLC Processor
Address Data (hex) Address Data Address
N7:0 0022 FFOO0 1122 FFO1
N7:1 0033 FF02 3344 FFO3
N7:2 0044 FF04 55 66 FFO05

4-4

Chapter 4

Ladder-Program Interfaces

Send VME Interrupt

This message tells the PLC-5/VME processor to assert a VMEbus
interrupt. When the interrupt handler replies with an interrupt-

acknowledge cycle, the status/ID byte is returned to the interrupt handler.
Your ladder program must clear the

Received field for a certain For example:

interrupt level, located in word 24 of

the VME status file, so that the ladder SVI 2F0

program can recognize another

interrupt at that level. The update field The example above asserts IRQ2 and gives statls/ID value FOH to the
in the VME status file must also be set .

to one to reflect the fact that the VME interrupt handler.

status file has changed and is ready to
receive new interrupt information.

Check VME Status File

This message tells the PLC-5/VME processor to check the VME status file
for changes or to update the file with new VMEbus information. Before
executing this command, set bit 8.in element 28 of the VME status file if
you made changes to the file associated with the continuous-copy
configuration and you want the changes to take effect.

This command is needed when the NOCYV bit of the status control register
is set.

For example:
CSF

We N?CV flag in This message:
the VME status/
control register is:

serves no useful purpose because the PLC-5/VME processor firmware
0 periodically checks the VME status file for changes (so that the
PLC-5/VME processor knows to update its internal state to reflect the
changes to the VME status file).

allows the ladder program to communicate changes to the PLC-5/VME
1 processor. An example of such a change would be the ladder program’s
modification of the interrupt mask in the VME status file.

4-5

Chapter 4

Ladder-Program Interfaces

Message Completion and The PLC-5/VME processor manipulates only two of the status bits in the
Status Bits control word of the internal message control block:
= DN (done)

= ER (error)

For the copy operations, DN is not set until and unless the data are
successfully transferred. If an error occurs, ER is set and an error code is
placed in the message control block.

For the SVI operation, DN is set if and when the interrupt-acknowledge
cycle is successfully performed by the interrupt handler. If the message
syntax is incorrect (interrupt is not 1-7 or status/ID is not two hexadecimal
digits), ER is set along with an error code. (For the CSF operation, DN is
set immediately.

For unrecognizable messages, ER is.set along with an error code. The
error codes are:

Code Explanation

0000H | Success

0001H |Invalid ASCIlmessage.format
0002H | Invalid file type o
0003H | invalid file numiber
0004H - Invalid file element

0005H" |lInvalid VME address

0006H . Invalid VME transfer width

0007H | Invalid number of elements requested for transfer
0008H | Invalid VME interrupt level

0009H | Invalid VME interrupt status-id value

000AH | VMEDbus transfer error (bus error)

000BH | Unable to assert requested interrupt (already pending)

000CH | Raw data transfer setup error

000DH | Raw data transfer crash (PLC switched out of run mode)

000EH | Unknown message type (message type not ASCII)

If the PLC-5/VME processor receives the same message control block with
the same msg_address field from the processor core with the .TO (timeout)
bit set, the current operation is terminated.

VME Status File

Chapter 4

Ladder-Program Interfaces

The VME status file is a data file in the processor’'s memory. It is used to
store VME setup and status information. It contains the setup information
for the continuous copy to/from VME. The VME status file number is
placed in word 15 of the PLC-5/VME status file. This file should be an
unused integer file. The PLC-5/VME processor accesses word 15 only at
initialization; thus any change of word 15 after initialization will have an
unpredictable effect.

Your programming software package should provide you with the
following types of capabilities:

» monitor processor status
= clear minor and major faults
= monitor VME status

See your programming software ‘documentation for specific information
about how to get to and use the software screens.

4-7

Chapter 4

Ladder-Program Interfaces

The following is the physical structure of the VME status file:
wod 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ‘VSYSF‘ PSYSF
1 ULA | | sc |
2 | RELM
3 Reserved
4 | SLE | SLADDRESS (HI BYTE)
. SLADDRESS
6 | FEN | FAM | | DS | FERROR
7 Reserved
8 | FADDRESS (HI BYTE)
9 FADDRESS
10 FLENGTH
11 FFILE
12 FELEMENT
3 FINT
14 FSTATUSID
15 | TEN | TAM | | TS TERROR
16 Reserved
17 | TADDRESS (HI BYTE)
18 TADDRESS
19 TLENGTH
20 TFILE
21 TELEMENT
22 | TINT
23 TSTATUSID
24 | IRQTE| IRQ6E 1RQSE| IRQ4E| IRQ3E| IRQZE| IRQIE| IRQ7R| IRQ6R IRQSR| IRQ4R| IRQ3R | IRQ2R| IRQIR
25 IRQ2SID IRQLSID
26 IRQ4SID IRQ3SID
21 IRQ6SID IRQ5SID
28 UPDATED IRQ7SID
29
Reserved
31

The fields are explained in Table 4.B. The fields marked in white are
read-only; they are for monitoring only and should not be overwritten.

4-8

Chapter 4

Ladder-Program Interfaces

Table 4.B
Fields for the Physical Structure of the VME Status File
Word | Code Function Explanation
0t VSYSF Describes the state of the VME | If 0, SYSFAIL is being asserted (including by the PLC-5/VME processor);
SYSFAIL signal. Read only. if 1, SYSFAIL is not being asserted.
0t PSYSF Read only Describes the state of the VME SYSFAIL signal as being driven by the PLC-5/VME
processor. If 0, the PLC-5/VME processor is asserting SYSFAIL; if 1, it is not.
1 ULA Unique logical address. The three-switch setting that determines the A16 base address of the PLC-5/VME
Read only. processor’s registers.
000 corresponds to FCOO,
001 corresponds to FC40,
111 corresponds to FFDO.
1 SC System controller. Read only. If 1, the PLC-5/VME processor has been configured as the VMEbus slot-1
system controller.
2t RELM VMEDbus release mode. If 0, the PLC-5/VME processor has been configured as RWD (release when done);
Read only. if 1, the PLC-5/VME processor has been configured as ROR (release on request).
41 SLE Slave enable. If 1, the PLC-5/VME processor’s slave memory in the VMEbus A24 address space has
Read only. been enabled.
41 SLADDRESS | Read only Address hits 23-16 of the base-address of the PLC-5/VME processor’s slave memory in
(HIBYTE) the VMEbus A24 address space.
5t SLADDRESS | Read only Address bits 15-0.of the base address of the PLC-5/VME processor’s slave memory in the

VMEbus A24 address space.

PLC ladder logic cannot write to statsu file fields that reflect A16 configuration register Settings; these fileds are read-only to ladder logic.

4-9

Chapter 4

Ladder-Program Interfaces

Continuous Copy The PLC-5/VME can automatically read and write every ladder scan

to/from VME to the the VMEbus without ladder-logic programming. You can configure
this function using your programming software or the ladder program
itself. See your programming software documentation for specific
information about where and how to configure this function in the
software.

Important: If you use ladder logic to make changes to your VME status
file, you must set word 28, bit 8 to 1 to apply the changes to your VME
processor.

You can only enable these operations when the PLC-5/VME processor is in
Run mode. You can specify up to 1000 words as the transfer length.

These words must be contiguous elements in files, but the transfer can span
files (see Figure 5.1).

The PLC-5/VME processor does not have the same programmable
synchronization control as thie 6008-LTV processor.

The 6008-LTV processor allows:

= copy transfer before or after the 1/0O update during housekeeping
» transfer to be asynichronous or synchronous with the ladder scan

In other words, the ladder scan would keep going (regardless of whether
the VME transfer finished or not) rather than holding the ladder scan until
the transfer.is complete.

The PLC-5/VME processor allows copying of data between the VMEbus
and the PLC-5/VME’s data table:

= during the housekeeping of the ladder processor
= concurrently with the 1/O update.

The data coming from the VMEbus is buffered and comes from the
previous ladder scan. If the new data is not ready from the VMEbus, then
housekeeping is held up until the new data is available. The data going
from the PLC-5/VME to the VMEDbus is transferred into VME during the
next ladder scan, just after housekeeping. There is a separate on-board
coprocessor that handles all VME transfers; and it is this processor that is
sending data to the VMEDbus during the ladder scan.

You can read the processor’s input table. Because the transfer occurs
asynchronously with the 1/0O scan, however, values obtained from the input
table would likely be a mix of most recent values and values from the
previous scan cycle.

See Appendix A for examples of the commands and Chapter 7 for details
about performance and operation.

4-10

VMEDbus Interrupts

Chapter 4

Ladder-Program Interfaces

Error Codes

These are errors reported during the repeated continuous-copy operations
initiated by the continuous-copy-to-VME and continuous-copy-from-VME
commands. The existence of the error can be determined by examining the
copy-to-state andopy-from-state fields in the command control register.

The error code itself can be found in the VME status file.

Code Explanation

01H VMEbus transfer error (VME bus error)

07H Bad data address

FDH Length specified as 0 or too large

FEH Last end-of-opy interrupt not acknowledged

As well as being able to'generate VMEDbus interrupts, the PLC-5/VME
processor can receive interrupts generated by itself and other cards in the
system. You can.enable or disable the function of receiving any or all of
the seven VME.interrupt levels using your programming software.

See your programming software documentation set for information about
how and-.where to enable or disable this function.

Your ladder program must clear tReceived field for a certain interrupt
level,located in word 24 of the VME status file, so that the ladder program
can recognize another interrupt at that level. The update field in the VME
status file must also be set to one to reflect the fact that the VME status file
has changed and is ready to receive new interrupt information.

4-11

Chapter 4

Ladder-Program Interfaces

The following is the physical structure of the VME operation
configuration file:

Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 ‘VSYSF‘ PSYSF
1 ULA | | sc |
2 | RELM
3 Reserved
4 | SiE | SLADDRESS (H! BYTE)
. SLADDRESS
6 | FEN | FAM | | DS | FERROR
7 Reserved
8 | FADDRESS (HI BYTE)
9 FADDRESS
10 FLENGTH
11 FFILE
1 FELEMENT
3 FINT
14 FSTATUSID
15 | TEN | TAM | | 7S TERROR
16 Reserved
17 | TADDRESS (HI BYTE)
18 TADDRESS
19 TLENGTH
20 TFILE
21 TELEMENT
22 | TINT
23 TSTATUSID
24 | IRQTE| IRQSE| IRQSE| IRQ4E| IRQ3E| IRQZE| IRQIE| IRQ7R| IRQ6R IRQSR| IRQ4R IRQ3R | IRQ2R| IRQIR)
25 IRQ2SID IRQLSID
26 IRQ4SID IRQ3SID
27 IRQ6SID IRQ5SID
28 UPDATED IRQ7SID
29
Reserved
31

The fields are explained in Table 4.C. Fields marked read-only are for
monitoring only and should not be overwritten.

4-12

Chapter 4

Ladder-Program Interfaces

Table 4.C
Fields for the Physical Structure of the VME Status File
Word | Code Function Explanation
62 FEN From-VME enabled If 1, the continuous-copy-from-VME operation is enabled (active when in run mode).
62 FAM From-VME If 0, the continuous-copy-from-VME operation uses the 2D VMEbus address modifier (A16); if 1, it
address modifier uses 3D (A24).
62 FDS From-VME data size If 0, the continuous-copy-from-VME operation does D16 VMEbus transfers; if 1, it does DO8(EQ)
transfers.
62 FERROR From-VME error code If nonzero, refer to page 11 for the most-recent error.
82 FADDRESS (HI BYTE) | Meaningful only if TAM=1 | Address bits 23-16 of the address of the first byte of the VMEbus source.
92 FADDRESS VMEbus source Address bits 15-0 of the address of the first byte of the VMEbus source.
102 FLENGTH From-VME copy length The number of 16-bit words to be transferred by the continuous-copy-from-VME operation.
112 FFILE From-VME file number The number of the processor destination file of the continuous-copy-from-VME operation.
122 FELEMENT From-VME The number of the first element to be transferred in the destination file of the continuous-copy-
element number from-VME operation.
132 FINT From-VME interrupt If nonzero, the VMEbus interrupt level of the interrupt to be generated after completion of each
continuous-copy-from-VME operation.
000 specifies no interrupt,
001 specifies interruptlevel 1,
010 specifies level 2,
111 specifies level 7.
142 FSTATUSID From-VME status/ID The VMEbus status/ID value transmitted during interrupt-acknowledge cycles of the
above interrupt.
152 TEN To-VME enabled ‘ If-1, the continuous-copy-to-VME operation is enabled (active when in run mode).
152 TAM To-VME address modifier ; If 0, the continuous-copy-to-VME operation uses the 2D VMEbus address modifier (A16);

if 1, it uses 3D (A24).

2

Both PLC ladder logic and the VME host computer can write to the status file fields that control the continuous-copy-from function. When both the ladder program and the host computer try to update the
status file simultaneously, the ladder program overwrites the changes made by the host.

4-13

Chapter 4

Ladder-Program Interfaces

Word | Code Function Explanation

153 TDS To-VME data size If 0, the continuous-copy-to-VME operation does D16 VMEbus transfers; if 1, it does DO8(EQ)
transfers.

153 TERROR To-VME error code If nonzero, refer to NO TAG for the most-recent error.

173 TADDRESS (HI BYTE) | Meaningful only if TAM=1 | Address hits 23-16 of the address of the first byte of the VMEbus destination .

183 TADDRESS VMEbus destination Address bits 15-0 of the address of the first byte of the VMEbus destination.

193 TLENGTH To-VME copy length The number of 16-hit words to be transferred by the continuous-copy-to-VME operation.

203 TFILE To-VME file number The number of the processor source file of the continuous-copy-t0-VME operation.

213 TELEMENT To-VME element number | The number of the first element to be transferred in the source file of the continuous-copy-to-
VME operation.

223 TINT To-VME interrupt If nonzero, the VMEbus interrupt level of the interrupt to be<generated after completion of each
continuous copy to VME operation.
000 specifies no interrupt,
001 specifies interrupt level 1,
010 specifies level 2,
111 specifies level 7.

233 TSTATUSID To-VME status/ID The VMEDbus status/ID yalue transmitted during interrupt acknowledge cycles of the

above interrupt.

Both IPLC ladder logic and the VME
status file simultaneously, the ladder

host computer can write to the status file fields that control the contiriuous-copy-to function. When both the ladder program and the host computer try to update the
program overwrites the changes made by the host.

244

IRQXE

Interrupt x enabled

If bit x is L, the P?C-S/VME processor is an interrupt handler for interrupt IRQx. If IRQx is
asserted, the PLC-5/VME processor will perform a VMEbus interrupt acknowledge cycle, store the
interrupt status/ID received in IRQxSID, and set bit IRQXR.

244

IRQXR

Interrupt x received

I bit x is 1, the PLC-5/VME processor has accepted a VMEbus interrupt for IRQx since bit IRQXR
was last 0.
i

For bits 8 through 15, Both PLC ladder logic and the VME host compuiter can write to the VME IRQ status file field. When both the ladder program and the host computer try to update the status file
simultaneously, the ladder program overwrites the changes made by the host. If a given IRQXE flag is set to 0, then the corresponding IRQXR and IRQxSID flags are also cleared to 0.If a given IRQXE flag
is set and a VME interrupt is received on the corresponding level, then the corresponding IRQxR flag is set and the corresponding IRQXxSID field is loaded with 8-bit status ID that the interruptor returns.To
clear the IRQxR and IRQxSID fields, write a non-zero value into the VSF Updated field with your ladder program. This clears all IRQxR bits and IRQxSID fields.|f more than one interrupt arrives on a given
level before the ladder program clears the IROXR/IRQXSID fields, the corresponding IRQXR bit remains set and the IRQxSID field contains the SID from the last interrupt received.|f any interrupts are
pending when the VME status file update byte is set, the IRQxR/IRQXxSID fields are cleared and the interrupts discarded. Subsequent interrupts are handled as described above.

Status file contents are preserved across a power cycle or SYSRESET except in the following conditions:
-If a change is made to A16 configuration registers or board jumpers (i.e. system controller, bus grant level, ULA, etc.), the changes are reflected in words 0-5 of the status file.
-The IRQxR and IRQxSID fields are initially set to 0. When you cycle or reset power to the hardware, any interrupts that were pending become meaningless.

When you set the NOGV bit in the status and control register, continuous updating of the status file is disabled. Therefore, the coprocessor continues to execute continuous copies and handle VME
interrupts according fo the last status file settings you made - the last time you set the NOCV bit or sent a CSF ladder message. Any changes that the ladder program makes to the status file are not
forwarded to the coprocessor until you send a CSF message or clear the NOCV bit. Similarly, VME interrupts are not flagged in the status file until you clear the NOCV bit or send a CSF message.

25-27

IRQXSID

Interrupt x status/ID

If IRQXR is 1, this field is the VMEbus status/ID received from the interrupt acknowledge cycle.
Read only.

28

UPDATED

Accept status file changes

Unless bit NOCV is 1 in the VMEbus status/control register, the PLC-5/VME processor reads this
field every scan cycle as an indication of whether anything in the VME status file has changed. A
nonzero value denotes a change, in which case the PLC-5/VME processor determines the whole
status file for changes, records them as internal state, and stores zero in the UPDATED field. If a
ladder program or an external programming terminal changes the status file, it should put a
nonzero value in this field after making all the other needed changes to the status file.

4-14

Chapter

Commands

Chapter Objectives Read this chapter to understand the command interface to the PLC-5/VME
processor. The orientation of this chapter is based on a driver program
running on a separate CPU module communicating with the processor.

Unless otherwise noted, all multiple-byte numerical fields are represented
in big-endian (Motorola) format, meaning that the most-significant data
byte appears in the lowest-addressed byte.

Command Types There are four types of commands:
Command Commiand | Definition
Word \
Continuous Copy | 0001H LInstructs the PLC-5/VME processor to copy processor file
to VME memory to VMEbus memory once per scan cycle of the
| processor.

‘ It is similar in definition to the corresponding command in the
6008-LTV processor.

Continuousa)by 0002H Instructs the PLC-5/VME processor to copy VMEbus memory
from VME to the processor file memory once per scan cycle.

Handle Interrupts | 0003H Defines which VMEbus interrupts the PLC-5/VME processor
behaves as an interrupt handler.

Send PCCC FFFFH Sends a command packet containing a standard PCCC.
These were referred to as “selective” commands in the
6008-LTV processor.

5-1

Chapter 5

Commands

Continuous-Copy The command: Hasthe | Configures the PLC-5/VME processor to
Commands value of: copy a block of data:
Continuous copy to VME 0001 from its data table during each ladder scan.
Continuous copy from VME | 0002 into its data table during each ladder scan.

See Appendix A for a sample implementation of this command.

You can only enable these operations when the PLC-5/VME processor is in
Run mode. You can specify up to 1000 words as the transfer length.

These words must be contiguous elements in files, but the transfer can span
files (Figure 5.1).

Figure 5.1
Continuous-Copy Command Structure

Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Command word

1 Response word

2 Reserved Cmd interrupt level
3 Reserved Command interrupt status/ID

4 Reserved

5 Reserved

6 Reserved

7 Enable ‘ Width ‘ Address modifier

8 Data address (high)

9 Data address (low)

10 Data size

1 Data table file number

12 Element number

13 Reserved Op interrupt level
14 Reserved Op status/ID

15 Reserved

5-2

Chapter 5

Commands

Word | Command Description

0 Command word Has value 0001H (to VME) or 0002H (from VME).

1 Response word As defined previously for all commands in common. See page 3-9.

2 Command interrupt level As defined previously for all commands in common. See page 3-9.

3 Command interrupt status/ID | As defined previously for all commands in common. See page 3-9.

7 Enable If 0, none of the subsequent fields are interpreted and the currently defined copy-to-VME (or from-VME)
operation is disabled. If 1, this command establishes a new copy-to-VME or copy-from-VME operation.

7 Width This defines the data width used to perform reads and writes to VME for the copy operations.

0 denotes D16 and 1 denotes DO8(EO).

7 Address modifier This defines the address space in which the VME data are accessed. Only two values-are valid: 2D (A16)
and 3D (A24 or data falls in PLC-5/VME processor’s slave memory).

8-9 Data address This specifies the VME address at which data transfer is to begin: Bits 23-16 of the A24 VME address are in
bits 7-0 of word 8, and bits 15-0 of the VME address are in word 9. If A16 is'specified, word 8 is unused and
word 7 contains the A16 address.

If the PLC-5/VME processor’s slave memory is enabled, if A24 is specified, and if this address falls into
where the slave memory is mapped, the data is transferred.into.the slave memory without performing any
VMEDbus accesses. Otherwise, the PLC-5/VME processordoes the transfer as a VMEbus master.

10 Data size This specifies the number of 16-bit words to be transferred.

1 Data table file number This specifies the file number of the PLC-5/VME pracessor’s data table file to or from which data is to
be transferred.

12 Element number This specifies the element number in the data-table file at which the transfer is to begin.

13 Op interrupt level If nonzero, specifies the. VMEbus-interrupt to be generated upon completion of each copy operation.

000 specifies no interrupt,
001 specifies interrupt level 1,
010 specifies level 2,
111 specifies level 7:
14 Op status/ID If an end-of-each-copy interrupt is specified in the previous field, this field is the status/ID value returned by

the PLC-5/VME processor as a result of the corresponding interrupt-acknowledge cycle.

Notes on Copy Operations

For convenience of checking by the driver program, the on-going state
of continuous copy is described in the command control register (see
Chapter 3, page 3-6). If this indicates that an error has occurred, the
driver reads the VME status file (via a PCCC command) to obtain the
specific error code.

To change the copy parameters—i.e., to establish a different continuous
copy—in the PLC-5/VME processor, the driver must issue another
command to set bit 8 of element 28 in the VME status file using a PCCC
write operation.

5-3

Chapter 5

Commands

5-4

Copy Synchronization

The PLC-5/VME processor does not have the same programmable
synchronization control as does the 6008-LTV processor.

The 6008-LTV processor allows the copy transfer to:

= happen before or after the I/0O update during housekeeping
= be asynchronous or synchronous with the ladder scan

In other words, the ladder scan would keep going (regardless of whether
the VME transfer finished or not) rather than holding until the transfer
is complete.

The PLC-5/VME processor allows the copying of data between the
VMEDbus and the PLC-5/VME’s data table:

= during the housekeeping of the ladder processor
= concurrently with the I/O update

The data coming from the VMEDbus is buffered and was collected during
the previous ladder scan. If the new data is not ready from the VMEDbus,
the housekeeping is-held up until the new data is available. The data going
from the PLC-5/VME 1o the VMEDbus is transferred into VME during the
next ladder scan, just after housekeeping. There is a separate on-board
coprocessor that handles all VME transfers; and it is this processor that is
sending data to the VMEbus during the ladder scan.

You-can read the processor’s input table. Because the transfer occurs
asynchronously with the I/O scan, however, values obtained from the input
table would likely be a mix of most recent values and values from the
previous scan cycle.

See Appendix A for examples of the commands and Chapter 7 for details
about performance and operation.

Error Codes

These are errors reported during the repeated continuous-copy operations
initiated by the continuous-copy-to-VME and continuous-copy-from-VME
commands. The existence of the error can be determined by examining the
copy-to-state and copy-from-state fields in the command control register.
The error code itself can be found in the VME status file.

Chapter 5

Commands

Table 5.A

Error Codes

Code Explanation

01H VMEbus transfer error (VMEbus bus error)
07H Bad data address

09H Past end of data file

FDH Length specified as 0 or too large

FEH Last end-of-copy interrupt not acknowledged

Handle-Interrupts Command This command, whose command word has the value 0003, defines the
VME interrupts to be handled by the PLC-5/VME processor (Figure 5.2).

Figure 5.2
Handle-Interrupts Command Structure

Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Command word
1 Response word
2 Reserved Cmd interrupt level
3 Reserved Command interrupt status/ID
4 Reserved
5 Reserved
6 Reserved
7 Enable Reserved
8
Reserved
12
13 Reserved Op interrupt level
14 Reserved
15 Reserved

See Appendix A for a sample implementation of this command.

Chapter 5

Commands

Word | Command Description
0 Command word Has value 0003H
1 Response word As defined previously for all commands in common, see page 3-9.
2 Command interrupt level As defined previously for all commands in common, see page 3-9.
3 Command interrupt status/ID | As defined previously for all commands in common, see page 3-9.
7 Enable If 0, handling of the specified interrupt (op interrupt level) is disabled.
If 1, handling of the specified interrupt is enabled.
13 Op interrupt level Specifies the VMEbus interrupt whose handling is to be enabled or disabled.
000 specifies no interrupt,
001 specifies interrupt level 1,
010 specifies level 2,
111 specifies level 7.

When you enable an interrupt, the PL.C-5/VME processor detects this
interrupt on the VMEbus, perfornmis an 8-bit interrupt-acknowledge cycle,
and reads an 8-bit status/ID from the interrupter. The interrupt and
status/ID is then posted in the.VME status file for accessibility to the
ladder program.

This mechanism aliows VME interrupts to make a mark in the VME status
file in the processor. .The ladder program can test this element in the status
file to determine whether or not the interrupt has occurred. This essentially
converts interrupts to polled events from the point of view of the ladder
program and thus introduces some small fixed overhead to the scan time;
but it-gives the ladder program considerable flexibility in determining the
interrupt latency. For example, the ladder program can test for the

interrupt each scan, multiple times each scan (for smaller latency), or every
N scans.

Send-PCCC Command

Chapter 5

Commands

This command, whose command word has the value FFFF, sends an
Allen-Bradley Programmable Controller Communications Command. In
the 6008-LTV processor, this was known as the “selective command.”

See Appendix A for a sample implementation of this command.

Figure 5.3
Send-PCCC Command Structure

Word 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1 0

0 Command word
1 Response word
2 Reserved Cmd interrupt level
3 Reserved Command interrupt status/ID
4
Reserved
6
7 | Width, Address modifier
8 Packet.address (high)
9 Packet address (low)
10 Packet size
1
Reserved
15
Word | Command Description

0 Command word Has value FFFFH
1 Response word As defined previously for all commands in common. Note that command completion is defined
2 Commandinterrunt level as the point where the PLC-5/VME processor has processed the PCCC command and formed
A P the reply packet.
3 Command.interrupt status/ID
7 Width This defines the data width used to perform VME accesses to the packet.
\ 0 denotes D16 and 1 denotes DO8(EO).
7 Address modifier This defines the address space in which the packet is accessed.

Only two values are valid: 2D (A16) and 3D (A24 or data falls in PLC-5/VME processor’s
slave memory)

8-9 Packet address

This specifies the VME address at which the PCCC command packet begins. Bits 23-16 of
the A24 VME address are in bits 7-0 of word 8, and bits 15-0 of the VME address are in
word 9.

If the PLC-5/VME processor’s slave memory is enabled and if this address falls into where
the slave memory is mapped, the data is transferred into the slave memory without performing
any VMEbus accesses. Otherwise, the PLC-5/VME processor does the transfer as a
VMEbus master.

10 Packet size

The size of the PCCC command packet in bytes.

5-7

Chapter 5

Commands

Command-Protocol These are the command-protocol codes placed in the error-code field of the
Error Codes command-control register when the ERR bit is 1.

Code Explanation
00H No error

01H Invalid value in command register

02H Cannot access first word of command block (usually a VMEbus bus error)

03H Cannot access other than first word of command block

04H Cannot write response word in command block B
Response-Word These are errors reported in the response word of the command block
Error Codes when the command cannot be carried out successfully. The even byte of

the response word describes thetype of error and the odd byte describes
the time or situation of occurrence.

Code Explanation

00FFH | Command successfully completed

0200H | Bad address niodifier it command block
0300H | Bad VME address in command block
0400H | Bad command word (word 0)

0500H |.Bad data/packet size (word 10)

0600H. Local PCCC queue overflow; PCCC not processed

%OH VMEbus error

5-8

Chapter Objectives

PCCC Structure

Chapter

PLC-5/VME Processor Communications
Commands

Read this chapter to understand the function of the extended PCCCs in the
PLC-5/VME processor.

Important: Numerical data in the extended PCCCs-is defined in
little-endian (Intel) format.

See the Data Highway / Data Highway Plus./'DH-485 Communication
Protocol and Command Set reference manual, publication number
1770-6.5.16, for more information on PCCC commands.

PCCCs are transferred in a command packet attached to a send-PCCC
command. When the PLC-5/VME processor has finished processing the
PCCC, areply is returned by appending a reply packet to the PCCC
command packet.

A PCCC.command packet has the following format:
Bit
7 6 5 4 3 2 1 0

DST)
PSN)

Reserved
Reserved
Reserved (SRC)
Reserved (PSN)
0 | COMMAND
Reserved

TNS — first byte

TNS - second byte

| — | == [=

Byte

OO ~N OO0l b WNE O
o
o
o

FUNCTION CODE (FNC)
OPTIONAL DATA
(up to 243 bytes)
\
Command Description
First four words Currently unused and unexamined. To assure compatibility with any future

use of these hytes, they should be initialized to 0. DST, PSN and SRC are
included for reference only.

COMMAND Specifies the PCCC command type.

TNS Transaction or sequence word. A value that is copied into the reply packet
to associate commands with replies. There cannot be more than one PCCC
active in the PLC-5/VME processor with the same TNS from any source.

FUNCTION CODE | This is an extension of the COMMAND field.
OPTIONAL DATA | The value(s) and size of this field are specific to the type of command.

Chapter 6

PLC-5/VME Processor
Communications Commands

A PCCC reply packet has the following format:

Bit
7 6 5 4 3 2 1 0
0 LNH - first byte
1 LNH - second byte
2 Reserved (DST)
3 Reserved (PSN)
4 Reserved (SRC)
Byte 5 Reserved (PSN)
6 | o] 1] 0] o] COMMAND
7 REMOTE ERROR 0
8 TNS — first byte
9 TNS - second byte
10 OPTIONAL EXTENDED STATUS (EXT STS)
1
11/12 OPTIONAL DATA
(up to 243 bytes)
|

Command Description

LNH Length of the optional portion of the reply packet in bytes. The first byte
of LNH is.the high-order byte (actual length = LNH — 4).1

COMMAND JFCopied from the associated command packet.

REMOTE ERROR if nonzero, the PLC-5/VME processor has encountered a problem
attempting to process the command. 0001-1110 represent error codes
listed separately. 1111 indicates that the EXT STS field contains an error
code.

TNS Copied from the associated command packet.

OPTIONAL This field contains an error code when the REMOTE-ERROR field has

EXTENDED STATUS | the value 1111.

OPTIONAL DATA This contains data returned as part of the reply. The value(s) and size of
this field are specific to the type of command. Whether this field starts at
offset 10 or offset 11 depends on whether the specified command is
defined to return the extended status byte.

1 As we stated early in this chapter, all numerical data in the extended PCCCs is defined in Intel format,
however, this is the exception. This is in the Motorola format.

The host CPU driver program is responsible for leaving sufficient space for
the reply packet immediately after the command packet in memory. The
actual size of the reply packet depends on the specific type of

PCCC command.

6-2

Supported PCCCs

Chapter 6

PLC-5/VME Processor
Communications Commands

All PCCCs supported by the PLC-5 processor are supported by the
PLC-5/VME processor. Since only a subset are useful to driver programs,
only the useful subset and the PCCCs compatible with the “selective
commands” of the 6008-LTV processor are described here.

PCCC Name 6008-LTV Processor | Command |FNC | Page | Sample
(Equivalent Name)
Echo Echo 064 OOH . 65 | B59
Identify host and status Identify PLC-5/VME 06 03 76-6 B-67
processor, report status

Read-modify-write Write bit OF 26 6-8 ' B-76
Typed read Read block OF 68 6-10 ‘
Typed write Write block }70}7 167 | 618
Set CPU mode Set processor mode \ OF 3A 6-20 B-84
Upload all requests Set upload privilege \ OF 53 6-21 B-87
Download all requests Set download privilege OF 50 6-23 B-53
Upload complete Restart afteapk;d OF 55 6-24 B-50
Download complete Restart after download OF 52 6-25 B-56
Read bytes physical Physical read OF 17 6-26 B-70
Write bytes physical Fh§sicgl write OF 18 6-27 B-44
Get edit resource | OF 1 629 B-62
Return edit resource OF 12 6-30 B-73
Apply port configuration OF 8F 6-31 B-47
Restore port?onfiguration OF 90 6-32 B-81

Status codes returned in the reply packet are not defined for each PCCC,
but they are listed together in a subsequent section.

Some PCCCs require the specification of a system address as part of the
data. PCCCs support different formats of system addresses, but the only
form described in this manual is a binary memory address of something in
the file storage of the processor. The form recommended is compatible
with the form used in the 6008-LTV processor. Thus, the term “system
address” in the context of the following command descriptions is the
following seven-byte value.

06 FF file number FF element number

For instance, the 7-byte system address 06 FF 01 00 FF 02 01 specifies
element 258 (0102h) in file 1 (0001h).

Chapter 6

PLC-5/VME Processor
Communications Commands

Header Bit/Byte Table 6.A describes the bytes that compose the headers of command and
Descriptions reply packets. We do not repeat their descriptions in the description of
each command that follows.

Important: All numbers are decimal except where noted by an “H”
for Hexadecimal.

Table 6.A
Command and Reply Packets

Header Bytes | Function Description

CMD Command | CMD and FNC bytes together define the command to be
executed. Command codes are included in command
descriptions later in this chapter.

STS Status If the PLC-5/VME processor detects an error, it reports error
codes in the reply packet. Zero means no error. Error codes are
described for €ach command, below.

Set to zero in the command packet.

STS and EXT STS (extended status) are returned in the reply
[packet in response to some commands. STS hits 07-00 contain
' the value FOH when reporting extended status. Status and

| extended status codes that could be returned in the reply packet
are described for each command, below.

TNS Transaction | The host CPU'’s driver program should generate a unique 16-bit
code<(two | number for each transaction so that it can match replies to
bytes) corresponding commands. There should not be more than one

active packet with the same transaction number from any source.

Whenever the PLC-5/VME processor receives a command, it
copies the TNS value of the command packet into the same field
of the corresponding reply packet without changing the TNS

value.
FNC Function For a command packet, it combines with the CMD byte to define
code the command. See CMD, above.
EXT STS Extended If the PLC-5/VME processor detects an error, it reports extended
status code | status codes in the reply packets of some commands. See
STS, above.

The reply packet also contains the CMD byte. The PLC-5/VME processor
copies the CMD value from the command packet into the corresponding
reply packet.

Bit Description
07 Always zero

06 Designates command or response. The host CPU resets this bit when sending a
command. The PLC-5/VME processor sets this bit to 1 when sending a reply. (0=
command, 1 = reply)

05, 04 | Not used (set to zero)

03-00 | Command codes (in Hex)
Use command codes with function codes FNC to specify the type of command.

6-4

Chapter 6

PLC-5/VME Processor
Communications Commands

Echo Use this command to debug or test PCCC transmission capability. The
command packet can contain up to 243 bytes of data. The processor
simply returns (“echos”) the same data in the reply packet.

Message Format

Command Packet

DST | PSN | SRC | PSN | CMD | STS NS FNC DATA
00 00 | 00 00 | 06 00 00 Up to 243 bytes
Reply Packet
LNH | LNH | DST | PSN | SRC | PSN | cMD_| STS TNS | SAME DATA
Hi Lo | 00 00 00 00 | 46H up to 243 bytes

Error Codes

Extended status codes are reported in the response packet. The STS byte
contains O0H if no_error,-FOH when the PLC-5/VME processor detects an
error. If an error, the error code is indicated in the EXT STS byte

as follows:

STS' | \EXTSTS Description

00H ' - No error

FOH ' 10H lllegal command or format

' 20H Host has a problem and will not communicate

30H Remote station host is missing, disconnected, or shut down
40H Host could not complete function due to hardware fault
50H Addressing problem or memory protect rungs
60H Function disallowed due to command protection selection
80H Compatibility mode file missing or communication zone problem
90H Remote station cannot buffer command
BOH Remote station problem due to download

Refer to page D-3 for additional information on PCCC status codes.

Sample API Module

For a sample Refer to page: For a sample Refer to page:
interface implementation

header file: source file:

P40VECHO.H B-58 P40VECHO.C B-59

6-5

Chapter 6

PLC-5/VME Processor
Communications Commands

Identify Host and Status Use this command to:

= diagnostic command when debugging your host CPU’s driver program
» confirm communication with the specified PLC-5/VME processor

= identify its operating mode

= report other useful information before initiating an upload or download

Message Format

Command Packet

DST | PSN | SRC | PSN | CMD | STS TNS FNC
00 00 00 00 06 00 03
Reply Packet
LNH LNH | DST PSN | SRC PSN |CMD | STS TNS

STATUS (36 bytes)

Hi Lo 00 00 00 00 | 46H

See the “Header Bit/Byte Descriptions” section on page 6-4 for
descriptions of all bytes-except the table on the next page.

The STATUS field returned in the reply packet indicates the following:

6-6

Byte Description
1 ¢ 6perating status of the PLC-5/VME processor
' Bits 2-0 000 = program load 010 = run mode
100 = remote program load 101 = remote test
110 = remote run 001, 011, 111 = not used
Bit 3 0 = no fault 1 = major fault
‘ Bit4 0 = not downloading 1 = download mode
‘ Bit5 0 = not uploading 1 = upload mode
' Bit 6 0 = not testing edits 1 = testing edits
Bit 7 0 = no edits in PLC-5/VME processor 1 = edits in processor
2 EBH PLC-5/VME processor
3 38H Processor expansion type
4-7 Processor Memory Size (96K bytes) (low word, low byte first)
8 Series and revision of PLC-5/VME processor
Bits 4-0 00000 = Revision A 00001 = Revision B, etc.
Bits 7-5 000 = Series A 001 = Series B, etc.
9 Processor station number
Bits 5-0 Station number 0-63
10 FDH Future development
11 00H Future development

Chapter 6

PLC-5/VME Processor
Communications Commands

Byte Description
12,13 Number of data files used (highest assigned file number + 1) (low byte first)
14,15 Number of program files used (highest assigned file number + 1) (low byte first)
16 Forcing status

Bit0 0 = no forces active 1 = forces active

Bit4 0 = no forces present 1 =forces present

All other bits = 0
17 Memory protect

Bits 7-0 0 = memory not protected any bit set = memory is protected
18 RAM invalid

Bits 7-0 0 = RAM valid any bit set = invalid RAM
19 Debug mode (non zero means Debug mode is on)

20,21 Hold point file (low byte first) if Debug mode is on

22,23 Hold point element (low byte first) if. Debug mode is on

24,25 Edit time stamp seconds (low byte first)

26, 27 Edit time stamp minute (low byte first)

28,29 Edit time stamp hour. (low byte first)

30,31 Edit time stamp day-(low byte first)

32,33 Edit time stamp.mionth (low byte first)
34,35 Edit time stamp year (low byte first)

36 Port number this command received on (10H = port 1A, 11H = port 1B, 20H = port
“2A,21H = port 2B, 30H = port 3A,)

Error Codes

Extended status codes are reported in the response packet. The STS byte
contains O0H if no error, FOH when the PLC-5/VME processor detects an
error. If an error, the error code is indicated in the EXT STS byte

as follows:

STS EXT STS Description

00H - No error

FOH 10H Illegal command or format
20H Host has a problem and will not communicate
30H Remote station host is missing, disconnected, or shut down
40H Host could not complete function due to hardware fault
50H Addressing problem or memory protect rungs
60H Function disallowed due to command protection selection
80H Compatibility mode file missing or communication zone problem
90H Remote station cannot buffer command
BOH Remote station problem due to download

6-7

Chapter 6

PLC-5/VME Processor

Communications Commands

Read-Modify-Write

6-8

Refer to page D-3 for additional information on PCCC status codes.

Sample API Module

For a sample Refer to page: For a sample Refer to page:
interface implementation

header file: source file:

P40VIHAS.H B-64 P40VIHAS.C B-67

Use this command to set or reset specified bits ifi specified words of data
table memory. The command tells the PLC-5/VME processor to apply a
read-modify-write cycle to:

= read out the data

= apply an AND mask

= apply an OR mask

= return the results to the specified address

The address/mask field (up to 242 bytes) in the command packet contains
multiple blocks, each of-which contains an PLC-5/VME processor file
address, a 2-byte AND mask, and a 2-byte OR mask.

Read-Modify-Write changes bits in one or more elements in the
processor’s memory. The data field in the command contains up to 242
bytes of address/OR/AND mask field. For each element specified, the
processor reads a 16-bit word, ANDs it with the AND mask, ORs it with
the OR mask, and writes the result back into the location in the
processor memaory.

An address/OR/AND mask field is an 11-byte value defined as:

System address OR mask AND mask

7 2 2

As an example, 06 FF 02 00 FF 03 00 00 00 00 00 clears (zeroes) the word
at element 3 in file 2.

Important: The controller may change the states of the original bits in
memory before this command can write the word back to memory.
Therefore, some data bits may unintentionally be overwritten. To help
prevent this, we suggest that you use this command to write into the
storage area of a programmable controller’s data table, and have the
controller read the word only, not control it.

Chapter 6

PLC-5/VME Processor
Communications Commands

See the “Header Bit/Byte Descriptions” section on page 6-4 for
descriptions of all bytes except the following:

Use the: To specify:

PLC-5/VME processor | the address of the element(s) to be modified. You can use the 242-byte

ADDR field address/mask field to modify selected words in and between data files.

AND mask (2-bytes which bits are reset to 0 in the addressed word. A 0 in the AND mask

field) resets the corresponding bit in the addressed word to.0. A 1 in the AND
mask leaves the corresponds bit unchanged. Low-byte comes first in the
AND mask.

OR mask which bits to set to 1 in the addressed word. A 1.in the OR mask sets to 1

(2-byte field) the corresponding bit the addressed word. A 0 in the OR mask leaves the

corresponding bit unchanged. Low byte comes first in the OR mask.

Message Format

Command Packet

DST | PSN | SRC | PSN | CMD | STS NS ENC | PLCV5 AND OR
0 | 00 | 00 | 00 | OF | 00 26H | APDRESS | o 4i | Lo Hi
PLC-V5 ADDR repeats, up to 242 bytes

06 FF FILE # FF ELEM #
Lo Hi Lo Hi
Reply Packet
LNH | LNH | DST | PSN | SRC | PSN | CMD | STS TNS EXT
Hi Lo 00 00 00 00 | 4FH STS

Error Codes

Extended status codes are reported in the response packet. The STS byte
contains O0H if no error, FOH when the PLC-5/VME processor detects an
error. If an error, the error code is indicated in the EXT STS byte

as follows:
STS EXT STS Description
00H - No error
FOH 01H lllegal address—address field has an illegal value
02H lllegal address—not enough fields specified
03H lllegal address—specified too many address levels
06H lllegal address—file does not exist

07H Beyond end of file
0BH Access denied—privilege violation

Refer to page D-3 for additional information on PCCC status codes.

6-9

Chapter 6

PLC-5/VME Processor
Communications Commands

Sample API Module

For a sample Refer to page: For a sample Refer to page:
interface implementation

header file: source file:

PAOVRMW.H B-75] ‘ P4OVRMW.C ‘ B-76

This command lets the host CPU read file data from the PLC-5/VME
processor one packet at a time, starting at a specified address plus offset.
Your driver program must:

Typed Read

= re-issue the command for each packet'the number of times required to
complete the total transaction.

= manipulate the offset field to get the data for each packet.

The PLC-5/VME processor:

= automatically checks that the size and total transaction values do not
exceed the number of words in the data file.

= returns the specified-data type as an array.

This read-block.command contains a data-type ID. The host CPU places
the data-type code in the write-block command packet. The PLC-5/VME
processor places the data-type code in the reply packet of a read-block
command. The type of data received in a read-block command must match
the file type receiving the data. The driver program of the host CPU must
convert data types when necessary.

See the “Header Bit/Byte Descriptions” section on page 6-4 for
descriptions of all bytes except the following:

Use the: To:

PLC-5/VME processor | specify the first element of file data to be read. If the total transaction

ADDR field requires more than one packet, keep this address constant and
manipulate the OFFSET value.

OFFSET field (2 byte, | point to the starting element of each packet when the total transaction

low byte first) requires more than one packet. The offset specifies the number of
elements above the base address (PLC-5/VME processor ADDR). Set
the offset to zero for the first packet and manipulate its value for each
successive packet. The PLC-5/VME processor does not check overlaps
or spaces between packets.

TOTAL TRANSaction | specify the number of data elements (excluding ID bytes) of the total

field (2 bytes, low byte
first)

transaction. By specifying the total transaction in the first of multiple
packets, the PLC-5/VME processor can generate an error code if the
total transaction value will exceed the end boundary of the specified file.

SIZE field (2 bytes, low
byte first)

6-10

specify the number of DATA elements the PLC-5/VME processor must
return in each reply packet. The PLC-5/VME processor automatically
returns an array of data in response to a read-block command.

Chapter 6

PLC-5/VME Processor
Communications Commands

Important: The PLC-5/VME processor ADDR, OFFSET, and TOTAL
TRANS fields work together when the total number of words to be read
requires multiple packets.

Message Format

Command Packet

DST | PSN | SRC | PSN | CMD | STS NS ENC | OFFSET TOTAL | PLC-VG SIZE
0 | 00 | 00 | 00 | OF | 00 68H | Lo Hi | TRANS | ZADDR 1,0 4y
PLC-V5 ADDR
06 | FF | FILE# | FF | ELEM#
Lo Hi Lo Hi
Reply Packet
LNH | LNH | DST | PSN | SRC | PSN | CMD | STS NS a | b
Hi Lo 00 00 00 00 4FH DATA at address + offset

up to 244 bytes ———

a — data-type ID code byte(s). If there is an error, this field.indicates EXT STS extended status and no data is returned in field b.

b — DATA is returned starting at the PLC-5/VME ADDR plus OFFSET, low byte then high byte for each word. The PLC-5/VME
processor returns an array of the specified data type containing the number of elements specified by the SIZE byte field.
See section on Data Types.

Error Codes
Extended status codes are reported in the reply packet. The STS byte

contains OOH if no error, FOH when the PLC-5/VME processor detects an
error. If an error, the error code is indicated in the EXT STS byte

as follows:
STS EXT STS Description
00H - No error
FOH 03H lllegal address—specified too many address levels
06H lllegal address—file does not exist
07H lllegal address—beyond the end of the file
0BH Access denied—privilege violation

Refer to page D-3 for additional information on PCCC status codes.

6-11

Chapter 6

PLC-5/VME Processor
Communications Commands

Data Types

6-12

Data types are those resident in the PLC-5/VME processor. In the
typed-write and typed-read commands described in this chapter, each data
type has a code representing its ID. The data-type code is stored in byte
field “a” of the command or reply. Some data types have a corresponding
size. The data-type size is the number of bytes required to store one
element of the data type.

The field that stores the data-type ID and size codes has a default length of
one byte for ID and size codes 3-7. When the code exceeds 7, additional
bytes are appended to the default byte to specify ID and size. We describe
this in Table 6.B and Table 6.C.

Table 6.B
Data-Type Field Specified in Default Byte
ID Code Data Type \ 7Desc7ption
Abbr. Size
3 A 1 AsCH -
4 N, S, 1,0 2 F\teger (signed, two’s complement)
includes status and I/O data
5 T 1400 A-Btimer
6 ' ‘ 6 A-B counter
7 R g 1 6 A-B control
Table 6.C
Data-Type Field Specified in Appended Bytes
ID Code Data Type Description
Abbr. Size
8 F 4 Floating point (IEEE single precision)
9 - - Array (specifies data type and size)
10-15 |- - Reserved
16 D 2 BCD

Important: If you want to write one element of a data type per packet,
select any of the standard data-type codes such as for integer, timer,
counter, control, or floating point. If you want to write multiple elements
of the same data type per packet, select the data-type code for the array.
You specify the data-type and size codes of any standard data type in
the array.

Chapter 6

PLC-5/VME Processor
Communications Commands

Data-Type Field

The data-type field specifies the ID (type of data) and size (number of
bytes per element) of the data type used in these typed-write and
typed-read commands. The default data-type field (1 byte) contains an ID
format bit and value field for defining ID and size.

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ID Size
Format ID Code Format Size Code
Bit Bit

The data-type field can vary in length if more descriptor bytes are required.
Either of two format bits (bit 7 and/or.3) distinguish between a 1-byte or
multi-byte field.

If the format bit is: Then the adjacent 3-bit field:
Zero contains @ binary code (0-7) that specifies the data type ID or size.
One defines the humber of descriptor bytes appended to the default byte.

The appended descriptor bytes specify the ID or size. The order of
descriptor bytes is least to most significant. The most significant (MS)
bytes of zero value are permitted but overlooked.

When both the ID and size codes are appended, the ID bytes precede the
size bytes.

For example, the following data-type descriptor fields have identical value.
They describe an ID code of 4 (integer) and a size code of 2 (bytes
per element).

Bit 76543210 Bit 76543210 Bit 76543210
01000010 01001001 01001010
00000010 00000010

00000000

Example Data Types

We now present examples of several data-type IDs and corresponding data
field (fields a and b in the command or reply packets).

Important: The packet for a typed-write command is limited to one
element of a specified data type except for the array and character string.

6-13

Chapter 6

PLC-5/VME Processor
Communications Commands

Integer Example
The first byte is the data-type field (field a), the 2-byte element contains

the data (field b).
Bit 76543210

ID = 4 for integer
a | 01001010 | size = 2 hytes per element

b | 00000010 | LS

00000000 | s

value = 254

Floating-Point Example
The first two bytes are the data-type field (field a), the 4-byte element
contains the data (field b) which is single precision IEEE.

Bit 76543210

ID in next one byte
a | 10010100 | size = 4 bytes perelement

00001000 ID = 8 for-floating point

b 11111110 LS

11111110

11111110

11111110 MS

value riot computed

Control Structure Example
The first byte is the data-type field (field a), the 6-byte element contains
the data (field b).

Bit 76543210

ID =7 for control,
a | 01110110 | Size =6 bytes

b | 00000000 word 0 (LS)

00000000 | (MS)

00000000 | word 1 (LS)

00000000 | (MS)

00000000 | word 2 (LS)

00000000 | (MS)

value=0

6-14

Chapter 6

PLC-5/VME Processor
Communications Commands

Counter Example
The first byte is the data-type field (field a), the 6-byte element contains
the data (field b). Bits in the control word are:

Bit 76543210

ID = 6 for control, If you see: ‘ It means:

a | OLOOLD | size =6 bytes 15 up counter enabled
00000000 Control byte (LS) 14 down counter enabled
13 counter done
10000000 | Control byte (MS) 12 Y 2
00000000 | Preset(LS) 1 underflow

00000001 | (MS)

00000111 Accumulated (LS)

00000000 | (MS)

value: up counter enabled, not done,
no overflow/underflow, preset = 256,
accumulated = 7

Timer Example
The first two bytes are the data-type field (field a), the 10-byte element
contains the data (field b). Bits in the control word are:

Bit 76§45 If you see: | It means:
ID =5 for timer, -
a [+01011001 | Size in next one byte 15 timer enabled
7 14 timer timing

b 101 ize =
00001010 Size = 10 bytes per element 13 imer done
00000000 Control byte (LS) 9&8 time base (10 for 1

second)

11000010 Control byte (MS)

00001010 Preset (LS)

00000000 Preset (MS)

00000000 Reserved

00000000 Reserved

00001001 Accumulated (LS)

00000000 Accumulated (MS)

00000000 Reserved

00000000 Reserved

value: Timer enabled, timing, not done,
preset = 10 sec, accumulated = 9 sec.

6-15

Chapter 6

PLC-5/VME Processor

Communications Commands

6-16

Array Example

The array includes two 1D descriptors, the first specifies the structure as an
array and its total length, the second specifies the type of data in the array
and the number of bytes per element. You must count the second
descriptor as part of the data field.

Important: Select the array structure when transferring multiple elements
of the same data type.

In this example, the first byte is the data-type field and specifies size (total
number of data bytes including second descriptor), the second byte is the
ID descriptor for the array (both bytes in field a), the third byte is the ID
descriptor for the data type followed by data bytes (field b).

Bit 76543210

ID in next one byte
a 10010111 | Size =7 bytes includifig second descriptor

00001001 ID =9 for array

ba| 01000010 | D = integer,
~ size =2 bytes per element

b | 00000000 | IntegerO (LS)

00000000 | (MS)

11111110 Integer 1 (LS)

i | (M)

11111111 Integer 2 (LS)

00000000 | (MS)

value: 0, -2, 255

This array could include enough bytes to fill a packet.

Example of Character String

Chapter 6

PLC-5/VME Processor
Communications Commands

The first byte(s) are the descriptor (field a), followed by the character
string (field b). The string is not NULL determined.

Bit 76543210

a | 00110011
? 01000011
01100001
01110100
value = Cat

D=3
Size =3

ASCII C

ASCll a

ASCII't

a | 00111001

Bit 76543210

00010111

01010100

01101000

01101001

04110011
NS/

01101100

01100101

00101110

ID =3 for CS
Size in next byte

Size = 23 bytes
ASCII T
ASCIl h

ASCIl i

ASCll's

ASCII |
ASCll e

ASCII .

value = this is a fine example.

6-17

Chapter 6

PLC-5/VME Processor
Communications Commands

Typed Write

6-18

This command lets the host CPU write file data to the PLC-5/VME
processor one packet at a time starting at a specified address plus packet
offset. Your driver program must:

= re-issue the command for each packet the number of times required to
complete the total transaction.

= manipulate the offset field to place data of each packet in the correct
destination location.

The PLC-5/VME processor:

= automatically checks that the total transaction value does not extend
beyond the end of the data file.

= does not check for overlap or spaces between packets.

Typed-write commands contain a data-type ID. The host CPU places the
data-type code in the typed-write command packet. The PLC-5/VME
processor places the data-type code in the reply packet of a typed-read
command. The type of data sent with this typed-write command must
match the file type written to. The driver program of the host CPU must
convert data types when necessary.

Important: You may write multiple elements of the same data type

in a packet by selecting the data-type ID for the array. You may write
one-element of a data type in each packet by selecting any of the
standard data-type codes such as for integer, timer, counter, control, or
floating point.

See the “Header Bit/Byte Descriptions” section on page 6-4 for
descriptions of all bytes except the following:

Use the: To:

PLC-5/VME processor | specify the destination file number and first element number. If the total
ADDR field transaction requires more than one packet, keep this address constant
and manipulate the OFFSET value.

OFFSET field point to the starting element of each packet when the total transaction
(2 byte, low byte first) | requires more than one packet. The offset specifies the number of
elements above the base address (PLC-5/VME processor ADDR). Set
the offset to zero for the first packet and manipulate its value for each
successive packet. The PLC-5/VME processor does not check overlaps
or spaces between packets.

TOTAL TRANS field specify the number of data elements (excluding ID bytes) of the

(2 bytes, low byte first) | total transaction. By specifying the total transaction in the first of
multiple packets, the PLC-5/VME processor can generate an error
code if the total transaction value will exceed the end boundary of the
destination file.

Command Packet

Chapter 6

PLC-5/VME Processor
Communications Commands

Important: The PLC-5/VME processor ADDR, OFFSET, and TOTAL
TRANS fields work together when the total number of words to be written
requires multiple packets.

Message Format

/

DST | PSN | SRC | PSN | CMD | STS NS ENC | OFFSET | TOTAL | PLCVE. | a | b
0 | 00 | 00 | 00 | OF | 00 67H | Lo | Hi | TRANS | 77ADDR
PLC-V5 ADDR —— upto 244 bytes —
06 | FF | FILE# | FF | ELEM#
Lo Hi Lo Hi
Reply Packet
LNH | LNH | DST | PSN | SRC | PSN | CMD | STS NS EXT
H | Lo | 00 | 00 | 00 | 00 | 4FH STS

a — data type ID code byte(s).

b — DATA byte field.

See Data Typed section

Error Codes

Extended status codes are reported in the reply packet. The STS byte
contains OOH if no error, FOH when the PLC-5/VME processor detects an
error. If an error, the error code is indicated in the EXT STS byte

as follows:

STS EXT STS Description
00H - No error
FOH 02H lllegal address—not enough fields specified
03H lllegal address—specified too many address levels
06H lllegal address—file does not exist
07H lllegal address—beyond the end of the file
0BH Access denied—privilege violation
11H Mismatched data type

Refer to page D-3 for additional information on PCCC status codes.

6-19

Chapter 6

PLC-5/VME Processor
Communications Commands

Set CPU Mode Use this command to set PLC-5/VME processor’s operating mode.

A no-privilege error is returned if the requester does not have the privilege
of placing the host in a download mode. This error occurs when:

= the processor is not in Remote mode (must be in Remote Program
mode, Remote Run mode, or Remote Test mode)

= the processor is being edited
= some other node is already downloading to the processing
Bits 0 and 1 of the flag byte determine the operating mode of the

PLC-5/VME processor. To select the operating mode, set bits 1 and 0 in
flag byte “a.”

Mode Bit 01 Bit 00

Program Load (program scan idle, /0O scanasgled)

Remote Test (program scan enabled, 1I0 sean disabled)

Remote Run (program scan enaﬁed, /O scan enabled)

| = O O
| O =] O

No change to Operating Mode (only remote bit affected)

Bit 02 Remote Lock. If set, this will attempt to lock out all other remote
devices from changing the CPU mode.

Bits'03-07 are not used (set to zero).
See the “Header Bit/Byte Descriptions” section on page 6-4 for all byte

descriptions.

Message Format

Command Packet 7 3 2 1 0
Flag B

ST | PSN | SRC | PSN | CMD | STS ™NS FNC | Flag ag Byte Unused | Lotk | Mode

0 | 00 | 00 | 00 | oF | 00 3 By Bit | Select

Reply Packet

LNH | LNH | DST | PSN | SRC | PSN | cMD | STS NS EXT

Hi | Lo | 00 | 00 | 00 | 00 | 4FH STS

6-20

Chapter 6

PLC-5/VME Processor
Communications Commands

Error Codes

The STS byte contains 00H if no error. When detected, the PLC-5/VME
processor reports errors in its reply packet as follows:

STS EXT STS Description

00H - No error

FOH 0CH Resource not available—someone else already holds the edit
resource or has set the remote lockout bit

Refer to page D-3 for additional information on PCCC status codes.

Sample API Module

For a sample Refer to page: For a sample Refer to page:
interface implementation
header file: | source file:
P4OVSCM.H B-83 \PAOVSCM.C B-84
Upload All Request Use this command to place the PLC-5/VME processor in an upload mode

before uploadirig PLC-5/VME processor memory.

During upload, the PLC-5/VME processor is in upload/program,
upload/run, or upload/remote run mode. The host CPU can verify only
static memory segments if the PLC-5/VME processor is in upload/run or
upload/remote run mode, or if PLC-5/VME processor memory is altered
by message commands from a DH+ station during upload. Do this using
compare segments of memory segment pointers.

A no-privilege error is returned if the requester does not have the privilege
of placing the host in a download mode. This error occurs when:

= the processor is being edited
= some other node is already downloading to the processing

Important: This command returns information needed by the host CPU to
upload the PLC-5/VME’s processor memory. It returns pointers to
segments of memory that are used to process it sequentially. The result is a
physical image of the processor’'s memory that can only be downloaded to
the same processor model, series, and revision. After the upload is
completed, this image must not be modified.

See the “Header Bit/Byte Descriptions” section on page 6-4 for
descriptions of remaining bytes.

For a complete description of the upload algorithm, see page 6-34.

6-21

Chapter 6

PLC-5/VME Processor
Communications Commands

Message Format

Command Packet

DST | PSN | SRC | PSN | CMD | STS NS FNC
00 00 | 00 00 | OF 00 53H
Reply Packet
LNH | LNH | DST | PSN | SRC | PSN | CMD | STS NS EXT. | Mertiory Segment
Hi Lo | 00 00 | 00 00 | 4FH STS Pointers

Memory Segment Pointers
Upload/download Segments

1 byte 8 bytes
A

I 14

LNG Segment 1 Segment 2 Segment X
Start Pointer \ End Pointer Start Pointer \ End Pointer

Segment Identifier Repeats for the number of

Compare Segments transfer segments in the LNG field

1 byte 8 bytes
A

I 14

LNG Segment 1 Segment 2 Segment X
Start Pointer | End Painter Start Pointer | End Pointer

Segment Identifier

LNG — the number of transfer or compare segments that follow this single byte quantity.
Segment X — repeats for the number of transfer segments in the LNG field.

Error Codes

The STS byte contains 00H if no error. When detected, the PLC-5/VME
processor reports errors in its reply packet as follows:

STS EXT STS Description
00H - No error
FOH 0BH Access denied—PLC-5/VME processor in upload or download mode

Refer to page D-3 for additional information on PCCC status codes.

Sample API Module

For a sample Refer to page: For a sample Refer to page:
interface implementation

header file: source file:

P40VULAH B-86 P40VULA.C B-87

6-22

Download All Request

Chapter 6

PLC-5/VME Processor
Communications Commands

Use this command to place the PLC-5/VME processor in download mode
before downloading memory. This command clears PLC-5/VME
processor memory and loads default program files 0 and 1 (ladder), and
data files 0, 1, and 2 (I/O and status).

See the “Header Bit/Byte Descriptions” section on page 6-4 for a
description of each byte.

For a complete description of the download algorithm, see page 6-34.

Message Format

Command Packet

DST PSN | SRC PSN | CMD | STS TNS FNC
00 00 00 00 OF 00 50H
Reply Packet
LNH LNH | DST PSN. |"SRC PSN | CMD | STS TNS EXT
Hi Lo 00 00 00 00 4FH STS

Error Codes

The PLC-5/VME processor reports errors, if detected, in its reply packet
as follows:

STS EXT STS Description
00H - No error
FOH 0BH Access denied—PLC-5/VME processor is in run mode, memory

protected, or being programmed from a programming terminal
ODH PLC-5/VME processor already available

Refer to page D-3 for additional information on PCCC status codes.

Sample API Module

For a sample Refer to page: For a sample Refer to page:
interface implementation

header file: source file:

P40VDLAH B-52 P40VDLA.C B-53

6-23

Chapter 6

PLC-5/VME Processor
Communications Commands

Upload Complete Use this command at the completion of an upload to return the
PLC-5/VME processor to its pre-upload operating mode. If the upload
was initiated with the PLC-5/VME processor in program mode, now your
driver program can change the operating mode to run or Run/Program to
resume processor operation.

See the “Header Bit/Byte Descriptions” section on page 6-4 for a
description of each byte.

Message Format

Command Packet

DST PSN | SRC PSN | CMD | STS INS FNC
00 00 00 00 OF 00 55H
Reply Packet
LNH LNH | DST | PSN [SRC | PSN | CMD | STS TNS EXT
Hi Lo 00 00 00 00 4FH STS

Error Codes

The STS hyte contains O0H if no error. When detected, the PLC-5/VME
processor reports errors in its reply packet as follows:

STS EXT STS Description
00H - No error
FOH 0BH Access denied
ODH PLC-5/VME processor already available

Refer to page D-3 for additional information on PCCC status codes.

Sample API Module

For a sample Refer to page: For a sample Refer to page:
interface implementation

header file: source file:

P40VULC.H B-49 P40VULC.C B-50

6-24

Chapter 6

PLC-5/VME Processor
Communications Commands

Download Complete Use this command to return the PLC-5/VME processor from
download/program to Program mode after downloading memory. Now,
your driver program can change the PLC-5/VME processor’s operating
mode to run or Run/Program to resume processor operation.

See the “Header Bit/Byte Descriptions” section on page 6-4 for a
description of each byte.

Message Format

Command Packet

DST | PSN | SRC | PSN | CMD | STS TNS FNC
00 00 00 00 OF 00 52H
Reply Packet
LNH LNH | DST | PSN | SRC | PSN | CMD | STS TNS EXT
Hi Lo 00 00 00 00 4FH STS

Error Codes

The PLC-5/\/ME processor reports errors, if detected, in its reply packet

as follows:
- sT§ EXT STS Description
00H - No error
FOH 0BH Access denied
ODH PLC-5/VME processor already available

Refer to page D-3 for additional information on PCCC status codes.

Sample API Module

For a sample Refer to page: For a sample Refer to page:
interface implementation

header file: source file:

P40VDLC.H B-55 P40VDLC.C B-56

6-25

Chapter 6

PLC-5/VME Processor
Communications Commands

Read Bytes Physical Use this command to upload segments of PLC-5/VME processor memory
after a successful upload-all-requests command. You can upload up to 244
bytes (122 words) per packet. Words are loaded low byte first. The first
byte and the number of bytes read must be an even number.

Your upload PLC-5/VME processor memory uses successive read bytes
physical commands for each of three memory segments. The memory
segments are defined by start and end pointers returned by the upload all
requests command. The first command starts at the physical address
defined by a memory segment pointer. You must increment the physical
address in successive commands. You incremeritthe current physical
address over the previous physical address by the same number of bytes
(equal to the SIZE value) for each command until the segment is complete.
The packet size of the last command may be'less.

See the “Header Bit/Byte Descriptions” section on page 6-4 for a
description of all bytes except the following:

SIZE—this is a 2-byte field (Iow byte first) that contains the number of

bytes to read (up to,244, even number only) with each read bytes
physical command.

Message Format

Command Packet

DST | PSN "SRC | PSN | CMD | STS TNS FNC a SIZE
00 00 00 00 OF 00 17H

a - The physical address is a four-byte field (order of bytes is lowest to highest)
where the current packet starts to read (for example, 00 0A 00 00 for
physical address AQ0).

Reply Packet

DST | PSN | SRC | PSN | CMD | STS TNS a DATA (up to 244 bytes)
00 00 00 00 4FH 00

a — This byte will be the EXT STS extended status byte if there is an error.
Otherwise, the PLC-5/VME processor omits this byte.

6-26

Write Bytes Physical

Chapter 6

PLC-5/VME Processor
Communications Commands

Error Codes

The STS byte contains 00H if no error. When detected, the PLC-5/VME
processor reports errors in its reply packet as follows:

STS EXT STS Description

00H - No error

10H - Incorrect command format

40H - Internal error such as a parity error

FOH 03H Incorrect address
07H Segment exceeds the end of user memory
0AH Transaction size too large for'a packet
0BH Access denied
12H Invalid packet format

Refer to page D-3 for additional information on PCCC status codes.

Sample API Module

For a sample | Refer.topage: For a sample Refer to page:
interface ‘ implementation

header file: ‘ source file:

P40VRBP.H ‘ B-69 ‘ P40VRBP.C B-70

Use this command to download PLC-5/VME processor memory after a
successful download-all-requests command. You can download up to 119
words (238 bytes) per packet. Words are loaded low byte first. The first
byte and the number of bytes written must be an even number.

You download PLC-5/VME processor memory using successive write

bytes physical commands for each of three memory segments. The
memory segments are defined by start and end pointers returned by the
upload all requests command. The first command starts at the physical
address defined by a memory segment pointer. You must increment the
physical address of successive commands. You increment the current
physical address over the previous physical address by the same number of
bytes (equal to the SIZE value) each command until the segment is
complete. The packet size of the last command may be less.

See the “Header Bit/Byte Descriptions” section on page 6-4 for a
description of each byte.

6-27

Chapter 6

PLC-5/VME Processor
Communications Commands

Message Format

Command Packet

DST | PSN | SRC | PSN | CMD | STS TNS FNC a b
00 00 00 00 OF 00 18H

a - The physical address is a four-byte field (order of bytes is lowest to highest)
where the current packet starts to write. For example, 00 0A 00 00.

b - You can write up to 119 data words (two bytes per word) per command packet (enter low byte first).

Reply Packet
LNH | LNH | DST | PSN | SRC | PSN | CMD | STS TNS EXT
Hi Lo 00 00 00 00 4FH 00 STS

Error Codes

The STS byte contains Q0H if no error. When detected, the PLC-5/VME
processor reports-errors in its reply packet as follows:

STS | EXTSIS | Description

00H - No error

10H = Incorrect command format

WH P\ Internal error such as a parity error

60H - Write operation disallowed

FOH 03H Incorrect address
07H Segment exceeds the end of user memory
12H Invalid packet format
0BH Access denied

Refer to page D-3 for additional information on PCCC status codes.

Sample API
For a sample Refer to page: For a sample Refer to page:
interface implementation
header file: source file:
P40VWBP.H B-43 P40VWBP.C B-44

6-28

Chapter 6

PLC-5/VME Processor
Communications Commands

Get Edit Resource Use this command to secure the edit resource for the programming device.
Once you have obtained the edit resource, no one else can write to or
modify the device.

Message Format

Command Packet

DST | PSN | SRC | PSN | CMD | STS TNS FNC
00 00 00 00 OF 00 11H
Reply Packet
LNH LNH | DST | PSN | SRC | PSN | CMD | STS TNS EXT
Hi Lo 00 00 00 00 4FH STS

Error Codes

The PLC-5/VME processor reports errors, if detected, in its reply packet

as follows:
STS | €xTSTS | Description
00H - No error
FOH 0BH Access denied

OCH Another module already has edit resource

ODH Module already has edit resource

Refer to page D-3 for additional information on PCCC status codes.

Sample API
For a sample Refer to page: For a sample Refer to page:
interface implementation
header file: source file:
P40VGERH B-61 P40VGER.C B-62

6-29

Chapter 6

PLC-5/VME Processor
Communications Commands

Return Edit Resource Use this command to return the edit resource when editing is completed.
When you return the edit resource, the programming device can be written
to or modified.

Message Format

Command Packet

DST | PSN | SRC | PSN | CMD | STS TNS FNC
00 00 00 00 OF 00 12H
Reply Packet
LNH LNH | DST | PSN | SRC | PSN | CMD | STS TNS EXT
Hi Lo 00 00 00 00 4FH STS

Error Codes

The PLC-5/VME processor reports errors, if detected, in its reply packet

as follows:
STS | €xTSTS | Description
00H - No error
FOH OCH Another module has edit resource

Refer to page D-3 for additional information on PCCC status codes.

Sample API

For a sample Refer to page: For a sample Refer to page:
interface implementation

header file: source file:

P40VRER.H B-72 P40VRER.C B-73

6-30

Apply Port Configuration

Chapter 6

PLC-5/VME Processor
Communications Commands

Use this command to change the configuration of some or all ports. No
parameters means to change all ports. This command reconfigures the
ports based on information in the processor’s physical memory. It is
normally used as part of a physical download operation where the
processor memory and configuration are to be fully restored.

You must have the edit resource to use this command.

Command Parameters

1. Number of ports to change—zero means all ports
2. Port-number list

Message Format

Command Packet

DST
00

PSN | SRC | PSN | CMD |/ STS TNS FNC a b
00 00 00 OF 00 8FH

a — The number of ports to change:is a one-byte field—00 means “all ports.”
b — Port numbers in this list-are two.bytes each, low byte first.

Reply Packet
LNH LNH | DST ©~ PSN | SRC | PSN | CMD | STS TNS EXT DATA
Hi Lo 00 00 00 00 4FH 00 STS

\—v—/

This data is returned only if there is an EXT STS error 12H. It contains the file
and element that relate to the error.

Error Codes

The PLC-5/VME processor reports errors, if detected, in its reply packet
as follows:

STS EXT STS Description
00H - No error
FOH 12H Error in configuration

Refer to page D-3 for additional information on PCCC status codes.

6-31

Chapter 6

PLC-5/VME Processor
Communications Commands

Operation

Active Port Configuration

Processor Memory

Port-Configuration
Information

This command applies the port-configuration information that exists in
physical memory to the chips that control the I/O ports. This makes it
possible to restore the 1/0 ports to the state that they were in during full
physical memory restore operations (i.e., download all request).

Sample API
For a sample \ Refer to page: For a sample Refer to page:
interface implementation
header file: ‘ source file:
P40VAPC.H ‘ B-46 P40VAPC.C B-47
Restore Port Configuration Use this command to replace the working configuration with the

permanent configuration. This command saves the current active 1/0
port-configuration information into the processor’s physical memory. It is
normally used as part of a physical upload operation where the processor
memory and configuration are to be fully saved.

The edit resource is required for this operation.

Command Parameters

1. Number of ports to change—zero means all ports
2. Port-number list

6-32

Message Format

Command Packet

Chapter 6

PLC-5/VME Processor
Communications Commands

DST | PSN | SRC
00 00 00

PSN | CMD | STS
00 OF 00

TNS

FNC a b
90H

a - The number of ports to change is a one-byte field—00 means “all ports.”
b — Port numbers in this list are two bytes each, low byte first.

Reply Packet
LNH LNH | DST PSN | SRC PSN | CMD STS TNS EXT
Hi Lo 00 00 00 00 4FH 00 STS
Error Codes
STS EXT STS Description
00H - No error

Refer to page D-3 for additional information on PCCC status codes.

Operation

Active Port Configuration

Processor Memory

Port-Configuration
Information

This command saves the port-configuration information in the chips that
control the I/O ports into the physical image. This makes it possible to
save it during full physical memory save operations (i.e., upload all

request).

Sample API

For a sample Refer to page: For a sample Refer to page:
interface implementation

header file: source file:

P40VRPC.H B-80 P40VRPC.C B-81

6-33

Chapter 6

PLC-5/VME Processor
Communications Commands

Upload and Download The upload-and-download procedure is a PLC-5/VME processor physical
Procedure save-and-restore procedure that uploads and downloads a binary image
from a PLC-5 processor out of and into VME memory.

Upload Procedure
An example of this procedure is included in Appendix A.
1. Identify the PLC-5/VME processor.

2. Set the processor’s operating mode to Program or Remote Program.
You can do this by using the PCCC command Set CPU Mode
described on page 6-20.

3. Clear all faults in the processor. Determine whether or not a
processor has faults by using the PCCC command Identify Host and
Status described on page 6-6.

4. Get the edit resource from the processor. This prohibits anyone else
from modifying or writing to the processor while upload is in
progress. You can do this by using the PCCC command Get Edit
Resource described'on page 6-29.

5. Ensure that the current port configurations will be saved into the
physical image. You can do this by using the PCCC command
Restore Port Configuration described on page 6-32.

6. “Inform the processor that you are going to upload all of its
physical memory. You can do this by using the PCCC command
Upload All Request described on page 6-21.

7. Extract the number of segments from the LNG field in the
response packet.

8. For each segment in the response packet, do the following:

a. Extract the startPointer for the segment by accessing the first
four bytes following the LNG field in the response packet.

b. Extract the endPointer for the segment by accessing the first
four bytes following the startPointer in the response packet.

c. Determine the segment size:

segmentSize endPointer startPointer+ 1

6-34

10.

11.

d.

Chapter 6

PLC-5/VME Processor
Communications Commands

Calculate the number of full physical reads that will be done
from the processor during the upload operation.

The maximum number of bytes is 244 for a physical read. We
will use 238 bytes in this example because that is the maximum
for physical write operations—this makes it easier to download
the processor’s memory in the future. This is an integer
division calculation:

fullReadCount =segmentSize238

Calculate the number of bytes in.the final physical read that may
have to be done from the processor..-This could be zero if the
segmentSize is an even multiple of 238 bytes. This is a
modulus integer calculatioii:

fullReadSize=s segmeniSizes 238

Do fullReadCount PCCC Read Bytes Physical (see page 6-26)
operations-on the processor. For each packet read from the
processor, write the following into a binary file:

Address Read From PLC (4 bytes)
Physical Read Size (1 byte)
Processor Memory (up to 238 bytes)

Verify the upload by reading the packet just written to the file
against the version in memory.

Be sure that you update the next address to read by the Physical
Read Size in your reading loop.

Verify the upload by repeating the process described in step 8 with
this change: instead of writing the data to a file, compare it to the
data that you previously stored in the file.

Terminate the processor upload operation. You can do this by using
the PCCC command Upload Complete described on page 6-24.

Return the edit resource so that others can write to the processor. You
can do this by using the PCCC command Return Edit Resource
described on page 6-30.

6-35

Chapter 6

PLC-5/VME Processor
Communications Commands

Download Procedure
An example of this procedure is included in Appendix A.
1. Identify the PLC-5/VME processor.

2. Set the processor’s operating mode to Program or Remote Program.
You can do this by using the PCCC command Set CPU Mode
described on page 6-20.

3. Clear all faults in the processor. You can determine whether or not a
processor has faults by using the PCCC command Identify Host and
Status described on page 6-6.

4. Inform the processor that you are going to download to its memory.
You can do this by using the PCCC command Download All Request
described on page 6-23.

5. For each file packet that you wrote to a binary file on doing a
processor upload, do the following:

a. Read afile packet from the binary file.

b. Doa PCCC command Write Bytes Physical (see page 6-27)
using the processor address, number of bytes, and data in the
file packet.

c.. Verify the download by using the PCCC command Read Bytes
Physical (see page 6-26) to read the data that was just written to
the processor. Compare the data just read from the processor to
the original in memory.

6. After all the file packets have been restored to the processor, issue the
PCCC command Download Complete (see page 6-25) to terminate
the download to the processor.

7. Get the edit resource from the processor. This prohibits anyone
else from modifying or writing to the processor while upload is
in progress.

8. Restore the saved port configurations by using the PCCC command
Apply Port Configuration described on page 6-31.

9. Return the edit resource so that others can write to the processor. You
can do this by using the PCCC command Return Edit Resource
described on page 6-30.

6-36

Chapter Objectives

VME Throughput Time

Chapter

Performance and Operation

Read this chapter to learn about the performance and. theory of operations
of the PLC-5/VME processor.

The PLC-5/VME is a standard PLC-5 processor with an embedded VME
coprocessor that uses standard port 3A for coprocessor communication.
The embedded VME coprocessor:

» handles any VME ladder-logic-message instructions
= serves the continuous-to/from-copy function in the PLC processor
= maintains the VME status file in the PLC processor

= handles all host VME processor requests for communication to the
PLC processor

All message instructions from the PLC processor going to the VMEbus are
processed like other message instructions in the PLC processor. The
controlbits act exactly the same way. Once the VME coprocessor gets the
command, it processes it according to the function.

For a'VME write instruction (CTV), the coprocessor makes another
request back to the PLC processor to get the data being sent to the
VMEDbus. It arbitrates for the bus if necessary and then transfers the data.
After the last DTACK from the VMEDbus, it sends a command back to the
PLC processor to let it know the command completed; and then the done
bit is set for the message instruction.

For a VME read instruction (CFV), the coprocessor arbitrates for the
VMEDbus and fetches the data. It sends the data to the PLC processor and
then tells the PLC processor that it is completed.

For the send VME interrupt, the coprocessor gets the command along with
the interrupt level and status ID code. It generates the VMEbus interrupt
and waits for the interrupt-acknowledge signal on the VME backplane.
When it sees this signal, it puts the status ID on the backplane along with
DTACK for the interrupt handler. It then sends a command back to the
PLC processor to let it know of completion so that it can set the done bit to
the message instruction.

7-1

Chapter 7

Performance and Theory of Operations

For the check-VME-status-file command,

If you want the VME: Set the NOCV bit to:

to check the VME status | zero.

file for changes during Important: This causes the performance of message instruction

every program scan transfers to degrade by a factor of 2 or greater.

not to check the VME one.

status file You can still check the VME status file by issuing the “check VME
status file” command using the message instruction “CSF.”

See Chapter 4 for information on the check-VME-status-file command.

Because the PLC processor uses the message instruction for VME
transfers, it competes with other message-instruction activity going to the
communication processor that handles this traffic in the PLC processor.
For example, having a programming terminal attached to the PLC
processor can have a large impacton VME transfers using the message
instruction. If the PLC processor.is attached to a large DH+ network, with
many transfers going to the PLC-5/VME processor, then this will impact

it as well.

Communication Methods The PLC processorinitiates the communication with the VME host CPU in
two ways:

= configuring an end-of-scan transfer
» throughladder logic and the message instruction

Both ‘methods use the dual-port memory as an intermediate buffer between
the PLC processor and VME coprocessor.

It is important to note that the two methods exchange data with the dual
port in different ways. The transfer can be either during the housekeeping
section of the PLC scan or the ladder logic section of the scan. The effect
on total PLC scan is the same but it is important to make the distinction
between them.

End-of-Scan Transfer

This method uses the copy-to-VME and copy-from-VME end-of-scan
transfer commands. You can execute one or both commands in a single
ladder scan and transfer up to 1000 words each.

When using this method, the housekeeping time is impacted. This is
because the transfer delays the ladder processor until the transfer with the
dual-port is complete; therefore, it is synchronous with and occurs only
once per scan.

7-2

Chapter 7

Performance and Theory of Operations

The PLC scan-time impact for either a read or write transfer with the
dual-port memory can be calculated as:

Transfer time = 22.41 s +(2.332 us)N +0.83 ps(N-1)
Where: Is the:

22.41 ps dual port set-up time

(2.332 ps)N dual port access per word

0.83 us(N-1) VME coprocessor loop time N

N number of words to transfer

Note: a transfer of 100 words = 337.78 us

Ladder-Logic Method
The ladder-logic method uses four VME commands:

= Copy to VME

= Copy from VME

= Send VME interrupt

= Check VME status file

When scanned- by the ladder-logic processor, the message instruction sets a
flag for the VME coprocessor. Once the coprocessor sees the flag, it
examines the command to determine the requested function and the
address of the data; it then executes the transfers.

There are some additional considerations when using this method:

= It adds additional throughput time to the completion of the message
instruction because the coprocessor has to examine the
requested command

= Because it is a standard message, the VME messages have to compete
with the other message-instruction activity in the PLC processor, so
timing is subject to many variables. For example, having a
programming terminal attached to the PLC processor increases the
transfer time.

Once the data is exchanged with the dual port, the ladder-logic processor
starts or is allowed to continue scanning the program and the VME
coprocessor asynchronously passes the data between the dual-port and
VME memory.

When using the message instruction, the ladder scan is impacted. The
message instruction transfer is totally asynchronous with the ladder scan
and may start and complete anywhere within the scan. It possibly could
take more than one scan to complete in a very fast program or could
happen more than once per scan with a continuous message in a very
long program.

7-3

Chapter 7

Performance and Theory of Operations

Benchmark Tests

7-4

The benchmark tests that we ran show approximately how long it takes to
perform a ladder-logic message instruction. This means the total elapsed
time from when the enable bit of the instruction went true until the done bit
went true. But the time it takes the data to get to the VMEbus in a write
instruction may actually be a little less than the elapsed time between the
enable and done bits. The reason is that the data actually makes it to the
VMEDbus some time before the PLC processor can set the done bit. This is
difficult to measure, but a good estimate would be about 1 msec.

We used the following setup to run the benchmark tests:

= The matrix of tests was done in a Motorola development system that
used a MVME 050 system controller card.

= One other master board was in the system, but it was not running any
tasks and it was not arbitrating.for the VMEDbus.

= The PLC-5/V40 processor was a series C, revision G processor.

= The channels were configured as follows:

Channel: Was configured to:

0 (serial port) sys?efnﬁant-to-point (unused)
1A DH link

1B } a scanner with no racks attached
2A d nothing (unused)

2B | nothing (unused)

We used the ladder-logic technique to measure the time it takes to perform
a VME transfer. Ladder logic enables a message instruction to do the
VME transfer. Then the ladder logic goes into an endless loop
incrementing a counter every time it goes through the loop. It stays in the
loop until the done bit is set. By knowing the exact time it takes to scan
the logic in the loop, the elapsed time until the done bit is set is calculated
by multiplying the accumulated value of the counter by the time it takes to
scan the loop once. The time it took to scan the following logic in the loop
was 16.1 msec.

~ MSG
Control MG10:0
MG10:0 MG10:0
w1 /T et
EN DN Counter C5:.0
Preset 32000
Accum 0
C5:.0
(U
MG10:0 MG10:0 cu
1 B/t IMP)———

EN DN

Chapter 7

Performance and Theory of Operations

Due to the different loading that can be placed on the communication
processor in the PLC/5 processor, transfer times are not consistent every
time. For each test, 20 readings were taken to calculate the numbers. We
present the minimum, maximum, and average values.

Setup #1

= NOCV =1 (VME coprocessor does not constantly.read PLC processor)
= Copy to global VME RAM on-board the PLC processor at 0xA00000
» Programming terminal not attached to PLC processor

Command Minimum msec. Maximum msec. Average msec.

CTV #N7:0 A0000 D16 1 40 80 5.0

CTV #N7:0 A000O D16 500 80 90 8.0

CTV #N7:0 A0000 D16 1000 12.0 130 12,0

CFV A0000 D16 #N7:0 1 40 70 5.0

CFV A0000 D16 #N7:0 500 80 9.0 8.0

CFV A0000 D16 #N7:0 1000 | 12:0 13.0 12,0

SVE 155 30 8.0 3.0

CSF 40 5.0 40

Setup #2

« NOCV =1 (VME coprocessor does not constantly read PLC processor)
= Copy to global VME RAM on-board the PLC processor at 0xA00000
= Programming terminal attached to PLC processor monitoring ladder file

Command Minimum msec. Maximum msec. Average msec.
CTV #N7:0 AO000 D16 1 4.0 16.0 6.0
CTV #N7:0 A0000 D16 500 8.0 17.0 11.0
CTV #N7:0A0000 D16 1000 | 12.0 220 14.0
CFV A0000 D16 #N7:0 1 5.0 15.0 7.0
CFV A0000 D16 #N7:0 500 8.0 180 12.0
CFV A0000 D16 #N7:0 1000 12,0 17.0 13.0
SVE 155 30 14.0 5.0

7-5

Chapter 7

Performance and Theory of Operations

Setup #3

= NOCV =1 (VME coprocessor does not constantly read PLC processor)
= Copy to global VME RAM off-board the PLC processor at 0x70000
» Programming terminal attached to PLC processor monitoring ladder file

Command Minimum msec. Maximum msec. Average msec.

CTV #N7:0 70000 D16 1 4.0 16.0 6.0

CTV #N7:0 70000 D16 500 7.0 18.0 T0.0

CTV #N7:0 70000 D16 1000 11.0 21.0 13.0

CFV 70000 D16 #N7:0 1 5.0 150 7.0

CFV 70000 D16 #N7:0 500 80 190 11.0

CFV 70000 D16 #N7:0 1000 11.0 23.0 13.0

SVE 155 3.0 14.0 5.0
Setup #4

= NOCV =0 (VME coprocessor constantly read PLC processor)
= Copy to global VME RAM on-board the PLC processor at 0xA00000
= Programmirng terminal not attached to PLC processor

Command Minimum msec. Maximum msec. Average msec.
CTV#N7:0 ADD00 D16 1 6.0 110 70
CTV #N7:0 A0000 D16 500 ‘ 10.0 14.0 12.0
CTV #N7:0 A0000 D16 1000 14.0 18.0 16.0
CFV A0000 D16 #N7:0 1 6.0 10.0 7.0
CFV A0000 D16 #N7:0 500 10.0 14.0 13.0
CFV A0000 D16 #N7:0 1000 14.0 19.0 18.0
SVE 155 4.0 8.0 6.0

7-6

Introduction to PLC-5/VME
Processor Scanning

Chapter 7

Performance and Theory of Operations

Setup #5

= NOCV =0 (VME coprocessor constantly read PLC processor)
= Copy to global VME RAM on-board the PLC processor at 0XxA00000
» Programming terminal attached to PLC processor monitoring ladder file

Command Minimum msec. Maximum msec. Average msec.

CTV #N7:0 A0000 D16 1 6.0 20.0 10.0
CTV #N7:0 A0000 D16 500 10.0 27.0 T(S.O
CTV #N7:0 A0000 D16 1000 114.0 25.0 N 18.0
CFV A0000 D16 #N7:0 1 6.0 20.0 10.0
CFV A0000 D16 #N7:0 500 10.0 20 15.0
CFV A0000 D16 #N7:0 1000 16.0 26.0 21.0
SVE 155 5.0 14.0 8.0

Setup #6

= NOCV =0 (VME coprocessor constantly read PLC processor)
= Copy to global VME RAM off-board the PLC processor at 0x70000
= Programming terminal attached to PLC processor monitoring ladder file

Command Minimum msec. Maximum msec. Average msec.

CTV#N7:0 ADD00 D16 1 6.0 210 10

CTV #N7:0 A0000 D16 500 ‘ 9.0 28.0 13.0
CTV #N7:0 A0000 D16 1000 12.0 27.0 18.0
CFV A0000 D16 #N7:0 1 6.0 20.0 10.0
CFV A0000 D16 #N7:0 500 11.0 26.0 16.0
CFV A0000 D16 #N7:0 1000 13.0 32.0 21.0
SVE 155 5.0 14.0 8.0

The basic function of a programmable controller system is to read the
status of various input devices (such as pushbuttons and limit switches),
make decisions based on the status of those devices, and set the status of
output devices (such as lights, motors, and heating coils). To accomplish
this, the PLC-5/VME processor performs two primary operations:

= program scanning—where logic is executed and housekeeping
is performed.

= 1/O scanning—where input data is read and output levels are set.

Chapter 7

Performance and Theory of Operations

Program Scanning

The program scan cycle is the time it takes the processor to execute the
logic scan once, perform housekeeping tasks, and then start executing

Logic Scan logic again.

Housekeeping The processor continually performs logic scanning and housekeeping. In a
PLC-5/V40, for example, basic housekeeping takes 3.2 ms. If it takes the
processor 21.8 ms to execute a logic scan, the overali program scan cycle
is 25 ms. You can monitor the program scan time-using the processor
status screen.

Housekeeping activities for PLC-5/VME processors include:
= processor internal checks

= updating the input image table with-remote I/O input status as contained
in the remote 1/O buffer

= updating the remote 1/O buffer with output data from the output
image table

Housekeeping activities for other standard PLC-5 processors also include:
= updating the input image table with processor-resident I/O input status

= updating processor-resident local I/0O output modules with data from the
outputimage table

Important: PLC-5/V40L processors also scan extended-local /0 chassis
(on channel 2) during housekeeping.

If no change in input status occurs and the processor continues to execute
the same logic instructions, the program scan cycle remains consistent (in
our example, at 25 ms). In real systems, however, the program scan cycle
fluctuates due to the following factors:

» false logic executes faster than true logic

= different instructions execute at different rates

» different input states cause different sections of logic to be executed
= interrupt programs affect program scan times

7-8

Chapter 7

Performance and Theory of Operations

Effects of False versus T rue Logic on Scan T ime
The rung below—which changes states from one program scan to the
next—will change your scan time by about 430

1:000 —LN
] F NATURAL LOG
00 Source N7:0
5
Dest F8:20
1.609438

If 1:000/00 is: | Then the rung is:

On true and the processor calculates theiatural log. A natural-log instruction takes
409 s to execute

Off false and the processor scans the rung but does not execute it. It takes only 1.4
s just to scan the rung.

Other instructions may have a greater or lesser effect.

Effects of Different Instructions on Logic Scan T ime
Some instructions have .a much greater effect on logic scan time than
others based on the-time'it takes to execute each instruction.

Program<can time is also affected by the basic construction of your ladder
rungs. The sizes of rungs and the number of branches in each can cause
the scan time to fluctuate greatly.

Effects of Different Input States on Logic Scan T ime

You can write your logic so that it executes different rungs at different
times, based on input conditions. The different amounts of logic executed
in the logic scans causes differences in program scan times. For example,
the simple differences in rung execution in the following example cause
the logic scan times to vary.

1:000 20
Rung 1
] [g IMP
02 -
Rung 2 MVM
B3:0 Rund 3 —MVM
1
00
on : Rung 4 0:013
| LBL IMP
02

7-9

Chapter 7

Performance and Theory of Operations

If 1:000/02 is: Rungs 2 and 3 are:
On Skipped
Off Executed

If you use subroutines, program scan times can vary by the scan time of
entire logic files.

Effects of Using Interrupts on Program Scan T ime

Program scan time is also affected by interrupt programs. An interrupt is a
special situation that causes a separate program to run independent of the
normal logic scan. You define the special event and the type of interrupt
that is to occur.

For example, a selectable timed interrupt (STI) is a program file that you
define to execute once every time period. If :

= you configure an STI to execute every 20 ms
» the STI program takes 3 ms to execute

= the logic scan is 21.8'ms

= housekeeping takes 3.2 ms

the first program scan in this example lasts a total of 28 ms.

Program Scan 1 Program Scan 2

Time = 20 ms 32 + 218 + 3 =28ms o Time = 40 ms (20 ms + 20 ms)
N House- Logic STI Tsme =40ms yt program scan 1 = 28 ms,
ST~ keeping Scan Scan meaning that the STI interrupts
Logic Scan 12 ms into the second
Logic Scan program scan.
Timllo:soekeeplng The STI _occurred 20 ms Timgozugekeeplng
into the first program scan.

Since the first program scan takes 28 ms, the STI actually occurs 12 ms
into the second program scan (28 + 12 = 40, which is the time for the
second STI to occur). This example points out that when the STI time
period is different than the program scan time, the STI occurs in different
places in the program scan. Also note that, due to fluctuations in
program-scan times, multiple STls may be executed during one scan and
no STIs during other scans.

When you enable VME interrupts on the PLC-5 processor, you must
disable the corresponding levels of the VME host’s interrupt-handling
hardware. If you do not do this, and both the VME host and the PLC-5
processor try to handle the same interrupt level, a hardware race condition
ensues and indeterminate interrupt processing may occur.

7-10

Chapter 7

Performance and Theory of Operations

I/O Scanning

The remote 1/O scan cycle is the time that it takes for the processor
(configured as a scanner) to communicate with all of the entries in its rack
scan-list once. The remote 1/O scan is independent of and asynchronous to
the program scan.

The scanner processor keeps a list of all of the devices connected to each
remote 1/O link. An example system would look like:this:

PLC-5/V40 Ch 1B Scan List
Chi1AL[] Rack Starting Rack Rarge
ChlBH] Address Group Size
1 0 Full 010-017
Rack 1 2 0 112 020-023
3 0 Full 030-037
Rack 2

In this example, channel 1B continually scans the three racks in its scan list and
places the data in the remote I/O buffer in the processor. The processor updates its
Rack3 own buffer and the 1/0'image table. During housekeeping, the two buffers are
updated by exchanging the‘input and output data with each other.

Important: The remote 1/O scan for each channel configured for scanner
mode is independent and asynchronous to the remote 1/O scan for any
other channel.

Figure 7.1 shows timing loops for discrete data transfer in a
PLC-5/VME processor.

7-11

Chapter 7

Performance and Theory of Operations

Figure 7.1
Remote 1/0 Scan and Program Scan T iming Loops
Remote I/0 Scan Timing Loop Program Scan TimingLoop
Rack 3 ‘;ij- ab Immediate I/0 O
2 ———» 10T (x)
LT <IN
£ a
= —» oy write outputs
& | Remote I/0 /O Image | Update o
Rack 2 g Buffer Data Exchange | 1.y 10 Image E >
Data = b
\4 i
i T Exchange read inputs
5 Extended Logic
Rackl | & X | ocal Scan
p Yy €| /0 Rack

O The processor responds to immediate input (IIN) and immediate output (I0T) requests during the
logic scan. The logic scan is suspended at the requestforimmediate input/output data. The logic scan
resumes after obtaining the data and fulfilling the request.

IIN and 10T data transfer directly to and from I/O modules in extended-local I/O chassis.
With remote I/O, only the remote I/O buffer is updated:
For more information, see the instruction quick reference in chapter 22.

During the housekeeping portion of the program scan, the remote 1/O
buffer is updated. Remember that the 1/0O scanner is constantly updating
the remote 1/O buffer asynchronously to the program scan.

Discrete and Block Transfer PLC-5/VME processors can transfer discrete data and block data to/from
/0 Scanning processor-resident local I/O, extended-local I/O chassis, and/or remote
I/O chassis.

Transferring Discrete Data

The remote I/O system is scanned in a separate and asynchronous scan to
the program scan. The remote I/O scan takes output data from the remote
I/O buffer to output modules and puts input data into the remote 1/O buffer
from input modules. The remote I/O scan time can take 3, 6, or 10 ms per
one rack in a chassis on the remote 1/O link, depending on baud rate. The
PLC-5/VME processor then exchanges the input and output image table
data with the remote 1/O buffer during the 1/O-update portion of
housekeeping.

7-12

Chapter 7

Performance and Theory of Operations

Extended-Local I/0

Processors that have extended-local I1/O capability scan the extended-local
I/O chassis (on channel 2) during the housekeeping portion of the program
scan. Extended-local I/O discrete data is exchanged between the processor
data-table image and the I/O in the extended-local I/O chassis. The time
that it takes to scan extended-local I/0 chassis is added to the
housekeeping time. See Figure 7.2.

Figure 7.2
Extended-Local 1/O Scan Time

~

;\

Logic Scan
Processor | Hemote , | Extended- Y
1O Bufer Local /0 Housekeepin
Checks ping
Update Scan) —~

Program Scan

The time in ms that it takes to scan extended-local I/O chassis depends on
the number of 1771-ALX adapter modules and the number of extended-
local I/O logical racks. The formula used to calculate the total time to scan
extended-iocal I/O chassis is:

extended-local /O scan time =(0.32 msx A) +(0.13 msx L)
Where: Is the:

A number of 1771-ALX modules

L number of logical racks in the extended-local I/O system

If you have three 1771-ALX modules in three chassis and a total of 4
logical racks, for example, the total time is calculated as follows:

extended-local /O scan time =(0.32 msx 3) +(0.13ms x 4)
or

extended-local I/O scan time =148 ms

housekeeping time =1.48 ms(extended-local I/0) +4.50 ms
(other housekeeping) or

housekeeping time =5.98 ms

7-13

Chapter 7

Performance and Theory of Operations

Figure 7.3
PLC-5/V40L Timing Loops for Discrete Data T ransfer

Remote I/0 Scan Program Scan

Timing Loop Timing Loop
Immediate I/0
——p 10T (x)
5 & UIN(y)
Rack3 | &
=)
<C
\ N2
«— =
§ —»—| Remote I/O Data Exchange V? ItTage Update §
S r4—| Buffer —> aple IO Image ~'®
Rack2 | 8 :
<C
i T Data (T v
/ Exchange
) Extended Logic
Rackl | & 4 b y | Local Scan
< y < I/0 Rack
a

write outputs

47
b >
read inputs

Immediate /O

The processor responds to immediate input (IIN) and immediate output
(I0T)requests during the logic scan. The logic scan is suspended at the
request for immediate input/output data. The logic scan resumes after
obtaining the data and fulfilling the request.

IIN and IOT data transfers directly to and from 1/O modules in extended-
local I/O chassis. With remote 1/O, only the remote 1/O buffer is updated.

Transferring Block Data

The exchange of block-transfer data and the logic scan run independently
and concurrently. The following sections explain block-transfer for
extended-local I/0 and then for remote I/O.

Extended-Local I/0

Requests for block-transfer data occur during the logic scan. Concurrent
with the execution of the logic, block-transfer requests are forwarded to the
appropriate 1771-ALX adapter module(s) and data is transferred. A
1771-ALX adapter module may start block-transfer operations to multiple
slots and have block-transfer data transactions on-going in parallel within
the 1771 chassis.

7-14

Chapter 7

Performance and Theory of Operations

Block-transfer duration is the time interval between the enabling of the
block-transfer instruction and the receipt of the done bit. The following
example and formulas make two assumptions:

= block-transfer instructions are consecutively placed in the logic program

= block-transfer modules in the I/O chassis are ready to perform when
operations are requested

The following example sets up a system and provides two formulas for
calculating block-transfer timing. The first formula is ‘a worst-case
calculation for the completion of all block-transfers in the system. The
second formula enables you to calculate the time to perform a
block-transfer for any one block-transfer module in the system.

For example, a PLC-5/V40L may. have three extended-local I/0O chassis
connected to channel 2. The first chassis contains two block-transfer
modules; the second chassis contains one block-transfer module; and the
third chassis does not contain block-transfer modules. It takes the logic
scan 15 ms to compiete; it takes housekeeping approximately 6 ms to
complete (as calculated in the formula on page 7-13). The longest
block-transfer requestis 20 words.

Extended-Local /0 Chassis 1 Extended-Local I/0O Chassis 2 Extended-Local I/O Chassis 3

PLC-5/V40L
Processor 1771-ALX Two BT 1771-ALX One BT 1771-ALX No BT
shdager Modules Adapter Module Adapter Modules
Maodule Module Module
Channel 2
Extended-Local 1/O Link 108181

7-15

Chapter 7

Performance and Theory of Operations

Formula 1—Worst-case time to complete all block-transfers in
extended-local I/O system where block-transfer duration (in nisxR

D= 2Ex L+ (0.1 W

Where: Is the:

E number of extended-local chassis with block-transfer modules

L largest number of block-transfer modules in any extended-local I/O chassis
W number of words in the longest block-transfer request N

D(ms) =(2 x2) x(2) +(0.1 x20) or D=10 ms
R=1 (when D< logic scan time). OR

R= Logic Scan + Housekeeping

Logic Scan

In this example,

R=1 (because the vaiue bBf (10 ms) < 15 ms logic scan time)
block-transfer.duration (ms) = 10 x 1 or 10 ms

The block-transfer duration shown above does not affect logic scan time.
This transfer of data occurs concurrent with execution of program logic.

Formula 2—Time for any one block-transfer in extended-local /0 system
(calculate for chassis 2 with block-transfer request of 20 words) where
block-transfer duration (in ms)B x R

D(ms)=2 Cx M+(0.1 W

Where: s the:

C number of extended-local chassis with 1771-ALX adapter modules
and block-transfer modules

M number of block-transfer modules in the chassis of the module
being calculated

W number of words in block-transfer request being calculated

D(ms) =(2 x2) x(1) +(0.1 x20) or D=6 ms
R=1 (when D< logic scan time) OR

R= Logic Scan + Housekeeping

Logic Scan

7-16

Chapter 7

Performance and Theory of Operations

In this example,

R=1 because the value Bf(6 ms) < 15 ms logic scan time
block-transfer duration (ms) =6 x 1 or 6 ms

The block-transfer duration shown above does not affect logic scan time.
This transfer of data occurs concurrent with execution of program logic.

Remote I/0

The processor performs block transfers asynchronously to the program
scan. The processor also interrupts the program scan asynchronously to
momentarily access BTW and BTR data files. The processor performs one
remote block transfer per addressed rack and per remote 1/O scan.

Figure 7.4 shows timing loops for block transfer from a PLC-5/VME
processor.

Figure 7.4
Transferring Block Data to Local andRemote I/O
Remote I/0
Scan U
Q = Queue
A= Active
Buffer BT
Requests
One transfer pe Q BTR or BTW Data
Remote 10 /0 scan \ < >
3 / Ale—0
Rack 7+ &
=
< BT Requests
Q | BTRorBTWDAE
One transfer per BTRor BTW Data
N Ld
1/0 scan Sal A .
BT Requests
& D
Rack6 | & One transfer per Q | BTRorBTW Data
=] | L8
2 I/0 scan \A A a
v
BT Requests
One transfer per Q BTR or BTW Data
. 1/0 scan P ~
& \A A < »
Rack5 | & <«
=]
<
Logic
Scan

O Interrupt from ST or Fault Routine

OThe adapter used in the remote I/O scan is the

Program Scan
1771-ASB adapter.

7-17

Appendix Objectives

Appendix A

Sample Applications

Read this appendix to understand how to write applications in a separate
VMEDbus CPU to interact with your PLC-5/VME processor.

The following programs are C-language programs that interact with the
PLC-5/VME processor from a separate CPU. The details of these
programs vary depending on the CPU, operating system, and C-complier
used. These specific programs run on RadiSys Corporation VMEbus EPC
(PC compatible) CPUs. The sample programs interact with the RadiSys’
EPConnect software library, which is a set of interfaces to the VMEbus
hardware on the EPC CPUs.

For this application: Refer to page: : For this make file: Refer to page:
VMEDEMO.CPP A-2 W VMEDEMO.MAK A-13
UPLOAD.CPP A-15 ‘ UPLOAD.MAK A-26
DOWNLOAD.CPP I A-27 ‘ DOWNLOAD.MAK A-34

ATTENTION: Because of the variety of uses for the functions

A in these sample applications, the user and those responsible for
applying this information must satisfy themselves that all the
necessary steps have been taken to ensure that the application of
this information meets all performance and safety requirements.
In no event shall Allen-Bradley Company, Inc. be responsible or
liable for indirect or consequential damages resulting from the
use or application of this information.

These sample applications are intended solely to illustrate the
principles of using PCCC commands, Radisys VME Driver, and
C programming. Allen-Bradley Company, Inc. cannot assume
responsibility or liability (to include intellectual property

liability) for actual use based on these samples.

Note: These sample applications are available on the
Allen-Bradley SuppotPlus Bulletin Board [(216) 646-6728].
Download file VMEAPI.ZIP. This file also contains application
programming interface (API) code.

A-1

Appendix A

Sample Applications

VMEDEMO.CPP

/ /

/ INCLUDE FILES /
/ /
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <string.h>

#include <conio.h>

#include <dos.h>

#include "epc_obm.h” /I Radisys API Definitions

#include "epc_err.h” /I Radisys API Error Definitions

#include "busmgr.h” /I Radisys’s VME Driver Definitions

#include "p40vcco.h” /I AB Continuous Copy Command Definitions
#include "p40vihas.h” /I AB PCCC Id Host and Status Definitions
#include "p40vspcc.h” /I AB Send PCCC Command Definitions
#include "common.h” /l Common AB Definitions

/ /

/ PRIVATE TYPE DEFINITIONS /

/ /

/I A record which contains information concerning what continuous copy
/I operation has been enabled. By using this record to store the data

/I when the user enters it during the enable continuous copy menu choice,
/I we can use this data to halt the continuous copy operation rather than
/I asking the user for it...

typedef struct

BOOL islnitialized;
ULONG vmeCmdBIkAddr;
UWORD baseAddr;
UWORD fileNumber;
UWORD elementNumber;
UWORD wordCount;
ULONG vmeDataAddr;

} CC_TYPE;

/I A record which contains information concerning which PLC-5/VME has had
/I its onboard VME enabled and where that memory has been placed in VME
/I A24 address space. We can use this data when we want to disable the

/I memory rather than asking the user for it...

typedef struct

BOOL islnitialized;
ULONG vmeSlaveAddr;
UWORD baseAddr;

} MEM_TYPE;

/ PRIVATE DEFINITIONS /

/I Global to this file. It contains the continuous copy to information.
static CC_TYPE cc_to;

/I Global to this file. It contains the continous copy from information.
static CC_TYPE cc_from;

/I Global to this file. It contains the enabled PLC-5/VME memory info.
static MEM_TYPE mem;

A-2

Appendix A

Sample Applications

;********************* PRIVATE FUNCTIONS DEFINITIONS ********i{**************/
/ /
void display_status(PLC540V_STATUS_TYPE *status);

void test_init_cc_to_vme(void);

void test_halt_cc_to_vme(void);

void test_init_cc_from_vme(void);

void test_halt_cc_from_vme(void);

void test_disable_slave_memory(void);

void test_enable_slave_memory(void);

void test_epc_to_plc_global_memory(void);

void show_error(char *str);

void test_pccc_id(void);

char *get_key_mode(int keyMode);

void go(void);

/ MAINLINE /

~

PURPOSE: This is the main function for the general VME demonstration
program. This program implements a main menu to "test drive”
various PLC-5/VME and Radisys functions.
INPUT: None.
OUTPUT: None

RETURNS: This program will return 1 to the DOS shell if there is-an
error and O if the program completed normally.

EXAMPLE:
vmedemo <CR>

where:
<CR> is a carrage return

BUILD ENVIRONENT:

Borland C++ 3.0 compiler

Use the VMEDEMO .MAK makefile to build the executable.
EDIT HISTORY:

Copyright Allen—Bradley Company, Inc. 1994

L T N T T I I I N N N N N N N N N N

main()

{

/I Let's clear the screen
clrscr();

/I Verify that the Radisys VME driver is present
if (EpcCkBm() = EPC_SUCCESS)
{

show_error("Fatal Error: Bus manager not installed.”);

exit(1);
}

/I Let's process menu selections...
go();

A-3

Appendix A

Sample Applications

/I Goodbye
clrscr();
gotoxy(0, 0);

return(0);
}
/ /
/ PRIVATE FUNCTIONS /
/ /
/ /
/ GO /

/ /
void go(void)
{

/I This function will continuously process the user's menu selections

/I Current menu selection
int menuChoice = 0;

/I Current status of a PLC-5/VME operation
PLC540V_STATUS_TYPE status;

/I Main menu title line
static char *abTitle =

Allen—Bradley’'s VME Demo

while(menuChoice != 100)

{

[* Let's show the centered title on the first line. */
clrscr();

highvideo();

gotoxy(1, 1);

cprintf(abTitle);

normvideo();

/* Present the menu to the user. */

gotoxy(20, 3); cprintf("1) Initiate continuous copy to VME.");
gotoxy(20, 4); cprintf("2) Halt continuous copy to VME.");
gotoxy(20, 5); cprintf(“3)- Initiate continuous copy from VME.”);
gotoxy(20, 6); cprintf("4) Halt continuous copy from VME.");
gotoxy(20, 7); cprintf(’5) Enable the PLC’s slave memory.");
gotoxy(20, 8); cprintf("6) . Disable the PLC’s slave memory.”");
gotoxy(20, 9);.cprinti("7) Initiate EPC to PLC global memory test.”);
gotoxy(20, 10);cprintf("8) Do the PCCC id host & status test.”);
gotoxy(20, 11);cprintf("100) EXIT");

highvideo();

gotoxy(20, 20);cprintf(" Enter a menu number:”);

gotoxy(46, 20);

normvideo();

/I Get the user’s selection
scanf("%d", &menuChoice);

A-4

/I Process the user’s selection
switch(menuChoice)

{

case 1:
/I Initiate a continuous copy operation from a PLC data file
/I to VME memory.
test_init_cc_to_vme();
break;

case 2:
/I Stop a previously initiated continuous copy operation from
/I a PLC data file to VME memory.
test_halt_cc_to_vme();
break;

case 3:
/I Initiate a continous copy operation from VME to a PLC data
Il file.
test_init_cc_from_vme();
break;

case 4:
/I Stop a previously initiated continuous copy operation from
/Il VME to a PLC data file.
test_halt_cc_from_vme();
break;

case 5:
/I Enable the PLC-5/VME’s VME memory.
test_enable_slave_memory();
break;

case 6:
/I Disable the PLC-5/VME’s VME memory.
test_disable_slave_memory();
break;

case 7:
/I Continuously write values to VME memory and have the
/I PLC read them and write to a SIM card.
test_epc_to_plc_global_memory();
break;

case 8:
/I Get the PLC-5/VME’s identity and status info.
test_pecc id();
break;

case 100:
I Quit
break;

default:
/I OOps... An error!
show_error("Error: Invalid menu choice”);

}

Appendix A

Sample Applications

A-5

Appendix A

Sample Applications

/ /

/ SHOW_ERROR /
/ /

void show_error(char *str)

{

/I This function will inform the user of an error.

gotoxy(20, 16);
highvideo();
cprintf(str);
gotoxy(20, 17);
cprintf("Press the backspace key to continue...”);
while('kbhit());
gotoxy(20, 16);
clreol();
gotoxy(20, 17);
clreol();
normvideo();

/ /
[rrxxxxxxxxxxxxxxxix TEGT EPC_TO_PLC_GLOBAL_MEMORY /
/ /
void test_epc_to_plc_global_memory(void)
{

/I This routine will instruct the EPC to write the values from

/I 0to 255 to VME shared global memory and then the PLC-5/40V

/I will read the value and send it to a SIM module for display.

/Il WARNING! THIS ROUTINE EXPECTS VME ADDRESS E00000 EXISTS! 7/

/I A 'loop counter
short i;

/I Tell the user how to exit this demo

clrscr();

gotoxy(20, 10);

cprintf("Press the backspace key when you wish to exit this demo...”);

/I While the user doesn't touch the keyboard, show the value and send it
/I to VME using the Radisys driver.
while ('kbhit())

if ((i >= 0) && (i <= 255))
{

/I Write the value to VME memory. */

gotoxy(20, 12);

cprintf("Sending. this value to global VME memory: ");
gotoxy(61, 12);

cprintf("9603d”, i);

EpcToVmeAm(BM_MBO | A24SD, BM_W16, (char far *) &, 0XE00000, 2);

/I Up our counter...
i++;
}

else

/I Reset the value to zero so it is within the range of
/I numbers that can be displayed on the SIM card.
i=0;

}

A-6

/

/

TEST_PCCC_ID /

/

void test_pccc_id(void)

{

/I This function will test the PCCC Id Host & Status command.

/I Address where to store command block
ULONG vmeCmdBIkAddr = 0;

/I Address where the PLC-5/VME's registers exists
UWORD baseAddr = 0;

/I Status information
PLC540V_STATUS_TYPE status;

/I ld Host & Status reply info
PLC540V_PCCC_IHAS_RPY_TYPE reply;

/I Clear the screen and get the desired command block and processor info
clrscr();
gotoxy(0, 10);
cprintf(
"Enter the VME command block address in hex (for the A24 addr space): ”);
scanf("%lx”, &vmeCmdBIkAddr);
gotoxy(0, 11);
cprintf("Enter the base address for the PLC-5/40V in hex: ”);
scanf("%Xx", &baseAddr);

/I Ask the PLC for its identity and status info
plc540v_pccc_id_host_and_status(
vmeCmdBIkAddr,
baseAddr,
kVME_D16_DATA_WIDTH;,
kVME_A24_ADDR_SPACE,
&reply,
&status);

/I Show the important data
gotoxy(20, 13);
cprintf("Processor Series: %c”", reply.plcStatus.series + 'A’);
gotoxy(20, 14);
cprintf("Processor Revision: < %c”, reply.plcStatus.revision + 'A’);
gotoxy(20, 15);
cprintf("Station Number: %05d", reply.plcStatus.stationNumber);
gotoxy(20, 16);
cprintf("Key Switch Mode: %s", get_key_mode(reply.plcStatus.keyswitchMode));
gotoxy(20, 17);
cprintf("Major Faults: %s",
reply.plcStatus.majorFault == kPLC540V_NO_MAJOR_FAULT ? "False”:"True");
gotoxy(20, 18);
cprintf("Memory Size (words): %05Id”, reply.plcStatus.memorySize/2);
gotoxy(20, 19);
cprintf("Data Table File Count: %05d”", reply.plcStatus.dataTableFileCount);
gotoxy(20, 20);
cprintf("Program File Count: %05d”, reply.plcStatus.programFileCount);

gotoxy(20, 24);

cprintf("Press the backspace key to continue...”);
while('kbhit());

gotoxy(20, 24);

clreol();

normvideo();

display_status(&status);

Appendix A

Sample Applications

A-7

Appendix A

Sample Applications

/ /
/ GET_KEY_MODE /

/
char *get_key_mode(int keyMode)

/I Return a string which textually described the state of the key
/I switch on the PLC.

static char mode[80+1];
switch (keyMode)

case kPLC540V_PROGRAM_LOAD:
strcpy(mode, "Program Load”);
break;

case kPLC540V_RUN:
strcpy(mode, "Run”);
break;

case kPLC540V_REMOTE_PROGRAM_LOAD:
strcpy(mode, "Remote Program Load”);
break;

case kPLC540V_REMOTE_TEST:
strcpy(mode, "Remote Test”);
break;

case kPLC540V_REMOTE_RUN:
strcpy(mode, "Remote Run”);
break;

}

return(mode);

/ /

[riprsrrrois TEST_ENABLE_SLAVE_MEMORY
/ /
void test_enable_slave_memory(void)

{
/I Enable the onboard VME memory on the PLC-5/VME processor.

/I Status information
PLC540V_STATUS_TYPE status;

/I A list of all the PLC's in this VME chassis. We will use a list of 1.
LOCATED_PLC540V. ARRAY_TYPE plcList;

/I Prepare the records which will contain info concerning the enabled

/I VME memory for the PLC.

memset((char *) &plcList, 0x0, sizeof(LOCATED_PLC540V_ARRAY_TYPE));
memset((char *) &mem, 0x0, sizeof(MEM_TYPE));

mem.isinitialized = 1,

/I Ask the user for the target PLC’s base address and where they want
/I to locate the PLC’s memory in VME space.
clrscr();
gotoxy(0, 10);
cprintf(
"Enter the desired VME slave address for the PLC (for the A24 addr space):);
scanf("%lIx”, &mem.vmeSlaveAddr);
gotoxy(0, 11);
cprintf("Enter the base address for the PLC-5/40V in hex: ”);
scanf("%x”, &mem.baseAddr);

A-8

Appendix A

Sample Applications

plcList[0] = mem.baseAddr;

/I Turn on the memory on the PLC at the requested VME location.
plc540v_enable_shared_memory(plcList[0], mem.vmeSlaveAddr, &status);

display_status(&status);

/ /

/ TEST_DISABLE_SLAVE_MEMORY /
/ /

void test_disable_slave_memory(void)

{
// Disable the VME memory on a PLC-5/VME processor.

/I Status info
PLC540V_STATUS_TYPE status;

/I A list of PLC’s in the VME chassis. This is a list of 1.
LOCATED_PLC540V_ARRAY_TYPE plcList;

/Il Verify that they have already enabled the VME memory

if (mem.islnitialized == 0)

{
show_error("You must first enable the PLC slave memory.”);
return;

}

memset((char *) &plcList, 0x0, sizeof(LOCATED_PLC540V_ARRAY_TYPE));
plcList[0] = mem.baseAddr;

/I Turn off the memory.
plc540v_disable_shared_memory(plcList[0], mem.vmeSlaveAddr, &status);

display_status(&status);

/ /

/ TEST_INIT_CC TO_VME /
/ /

void test_init_cc_to_vme(void)

{

/I Initiate a continuous copy from a PLC data file to VME memory.

/I Status information
PLC540V_STATUS. TYPE status;

memset((char *) &cc_to, 0x0, sizeof(CC_TYPE));
cc_to.islnitialized = 1;

A-9

Appendix A

Sample Applications

/I Get the continuous copy information from the user.
clrscr();

gotoxy(0, 10);

cprintf(

"Enter the VME command block address in hex (for the A24 addr space): ”

scanf("%lx", &cc_to.vmeCmdBIkAddr);

gotoxy(0, 11);

cprintf("Enter the base address for the PLC-5/40V in hex: ”);
scanf("%x", &cc_to.baseAddr);

gotoxy(0, 12);

cprintf("Enter the VME data address in hex (for the A24 addr space): ");
scanf("%lIx”, &cc_to.vmeDataAddr);

gotoxy(0, 13);

cprintf("Enter the file number to be copied from: ”);
scanf("%d", &cc_to.fileNumber);

gotoxy(0, 14);

cprintf("Enter the element number to be copied from: ”);
scanf("%d", &cc_to.elementNumber);

gotoxy(0, 15);

cprintf("Enter the number of words to be copied:);
scanf("%d”, &cc_to.wordCount);

/I Start the continuous copy operation...

plc540v_init_cont_copy_to_VME(
cc_to.vmeDataAddr,
cc_to.wordCount,
cc_to.vmeCmdBIkAddr,
cc_to.baseAddr,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
cc_to.fileNumber,
cc_to.elementNumber,
KVME_NO_INT_LEVEL,

0,
kVME_NO_INT_ LEVEL,
0,
&status);
display_status(&status);
/ /
/ TEST_HALT_CC_TO_VME

/ /

void test_halt_cc_to_vme(void)

{
/Il Disables the previous started continuous copy from a PLC data file to
/I VME memory.

/I Status information
PLC540V_STATUS TYPE status;

Il Verify that a continuous copy operation has been initialized.

if (cc_to.isInitialized == 0)

{
show_error("You must first initialize continuous copy to VME.");
return;

A-10

Appendix A

Sample Applications

/I Stop the continuous copy opeation...

plc540v_halt_cont_copy_to_VME(
cc_to.vmeDataAddr,
cc_to.wordCount,
cc_to.vmeCmdBIkAddr,
cc_to.baseAddr,
kKVME_D16_DATA_WIDTH,
kVME_A24 ADDR_SPACE,
cc_to.fileNumber,
cc_to.elementNumber,
KVME_NO_INT_LEVEL,

0,
kVME_NO_INT_LEVEL,
0,
&status);
display_status(&status);
/ /
/ TEST_INIT_CC_FROM_VME /

/ /
void test_init_cc_from_vme(void)

/I Initiate a continuous copy to a PLC data file from VME memory.

/I Status information
PLC540V_STATUS_TYPE status;

memset((char *) &cc_from, 0x0, sizeof(CC_TYPE));
cc_from.islnitialized = 1;

/I Get the continuous copy information

clrscr();

gotoxy(0, 10);

cprintf(

"Enter the VME command block address in hex (forthe A24 addr space): ”);
scanf("%lx”, &cc_from.vmeCmdBIkAddr);

gotoxy(0, 11);

cprintf("Enter the base address for the PLC-5/40V in hex: ”);
scanf("%x", &cc_from.baseAddr);

gotoxy(0, 12);

cprintf("Enter the VME data address in hex (for the A24 addr space): ”);
scanf("%lx”, &cc_from.vmeDataAddr);

gotoxy(0, 13);

cprintf("Enter the file numberto be copied to: ”);

scanf("%d”, &cc_from.fileNumber);

gotoxy(0, 14);

cprintf("Enter the element number to be copied to: ”);
scanf("%d”, &cc_from.elementNumber);

gotoxy(0, 15);

cprintf("Enter the number of words to be copied: ”);
scanf("%d”, &cc_from.wordCount);

A-11

Appendix A

Sample Applications

/I Initiate the continuous copy from VME to a PLC data file

plc540v_init_cont_copy_from_VME(
cc_from.vmeDataAddr,
cc_from.wordCount,
cc_from.vmeCmdBIkAddr,
cc_from.baseAddr,
kKVME_D16_DATA_WIDTH,
kVME_A24 ADDR_SPACE,
cc_from.fileNumber,
cc_from.elementNumber,
KVME_NO_INT_LEVEL,

0,
KVME_NO_INT_LEVEL,
0,
&status);
display_status(&status);
/ /
/ TEST_HALT_CC_FROM_VME
/ /
void test_halt_cc_from_vme(void)
{
// Disables the previous started continuous copy to a PLC data file from
/I VME memory.
/I Status information
PLC540V_STATUS_TYPE status;
/I Verify that a continuous copy operation has been initialized.
if (cc_from.isInitialized == 0)
{
show_error("You must first initialize continuous copy from VME.”");
return;
}
/I Stop the continuous copy operation...
plc540v_halt_cont_copy_from_VME(
cc_from.vmeDataAddr,
cc_from.wordCount,
cc_from.vmeCmdBIkAddr,
cc from.baseAddr,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
cc_from.fileNumber,
cc_from.elementNumber,
KVME_NO_INT_LEVEL,
0,
kKVME_NO_INT_LEVEL,
0,
&status);
display_status(&status);
}

A-12

Appendix A

Sample Applications

/ /

/ DISPLAY_STATUS /
/ /

void display_status(PLC540V_STATUS_TYPE *status)

/I This function determines if the status was an error. If so, it will
I/ display a specific error type to the screen. Three areas can create
/I errors: The PLC-5/VME Processor, the EPC Driver or PCCC commands.

char buf[80+1];
if (status—>plc540vStatus != 0)

cprintf("\7\7\7");
switch(status—>statusCategory)
{
case kPLC540V_STATUS:
sprintf(buf, "%s: 0x%04x”, status—>plc540vStatus);
show_error(buf);
break;

case KEPC_STATUS:
sprintf(buf, "%s: %04d", status—>epcStatus);
show_error(buf);
break;

case kPCCC_STATUS:
sprintf(buf, "%s: 0x%04x”, status—>pcccStatus.value);
show_error(buf);
break;

default:
show_error("Unknown error!”);

VMEDEMO.MAK
AUTODEPEND

Translator Definitions
CC = bcc +VMEDEMO.CFG

TASM = TASM

TLIB =tlib

TLINK = tlink

LIBPATH = C:\BORLANDC\LIB
INCLUDEPATH = C:\BORLANDC\INCLUDE

Implicit Rules
.c.obj:
$(CC) —c {$<}

.cpp.obj:
$(CC) —c {$<}

List Macros

A-13

Appendix A

Sample Applications

EXE_dependencies = \
p40vihas.obj \
common.obj \
p40vcco.obj\
p40vspcc.obj \
vmedemo.obj \
{$(LIBPATH)}bmclib.lib

Explicit Rules
vmedemo.exe: vmedemo.cfg $(EXE_dependencies)
$(TLINK) N/xIn/P—IL$(LIBPATH) @&&|
c0l.obj+
p40vihas.obj+
common.obj+
p40vcco.obj+
p40vspcc.obj+
vmedemo.obj
vmedemo
no map file
bmclib.lib+
emu.lib+
mathl.lib+
cl.lib

Individual File Dependencies
p40vihas.obj: vmedemo.cfg p40vihas.c

common.obj: vmedemo.cfg common.c
p40vcco.obj: vmedemo.cfg p40vcco.c
p40vspcc.obj: vmedemo.cfg p40vspcc.c

vmedemo.obj: vmedemo.cfg vmedemo.cpp

A-14

Appendix A

Sample Applications

Compiler Configuration File

vmedemo.cfg: vmedemo.mak
copy &&|

—ml

-V

-y

—vi

—w-—ret

—w-nci

—w—inl

—wpin

—wamb

—wamp

—w—par

—wasm

—wcln

—w—cpt

—wdef

—w—dup

—w—pia

—wsig

—wnod

—w—ill

—W—sus

—wstv

—wucp

-wuse

—w—ext

—w—ias

—-w—ibc

—-w—pre

—w-nst

—I$(INCLUDEPATH)

—L$(LIBPATH)

-P

| vmedemo.cfg

UPLOAD.CPP

/ /

/ INCLUDE FILES /
/ /
#include <stdio.h>

#include <stdlib.h>

#include <mem.h>

#include <string.h>

#include "busmgr.h” /I Radisys’s VME driver definitions

#include "pccc.h” /I Generic Allen-Bradley (AB) PCCC definitions
#include "p40vger.h” /I AB PCCC Get Edit Resource

#include "p40vrer.h” /I AB PCCC Return Edit Resource

#include "p40vrpc.h” /I AB PCCC Restore Port Configuration
#include "p40vrbp.h” /I AB PCCC Read Bytes Physical

#include "p40vihas.h” /I AB PCCC Id Host and Status

#include "p40vula.h” /I AB PCCC Upload All

#include "p40vulc.h” /I AB PCCC Upload Complete

#include "p40vscm.h” /I AB PCCC Set CPU Mode

/ /

/ PRIVATE DEFINITIONS /

/ /
/I PLC-5/40V is using 0x900000 for VME communications.
const unsigned long kvmeSlaveAddress = 0x900000L;

A-15

Appendix A

Sample Applications

/I PLC-5/40V is using ULAO which is 0xFC00
const unsigned short kplc540vUla = OxFCOO;

/I This is the number of bytes to be read from the PLC-5/40V.
const unsigned short kReadSize = kPLC540V_PCCC_MAX_RBP_DATA;

/ /

/ PRIVATE TYPE DEFINITIONS /
/ /

/I The "bucket” that we are using to writing the PLC data, address and length
/I to the output file.

#pragma pack(1)

typedef struct

/I The PLC memory address
unsigned long plcAddress;

/I The number of bytes of PLC data in this packet.
unsigned short plcDatalLength;

/I The PLC data...

unsigned char plcData[kReadSize];
JFILE_PACKET_TYPE;
#pragma pack()

;********************* PRIVATE FUNCTIONS DEFINITIONS ********’{**************/
/ /
unsigned long extract_start_pointer(char far *data);
unsigned long extract_end_pointer(char far *data);
unsigned long calc_segment_size(unsigned long startPointer, unsigned lorig endPointer);
unsigned short calc_physical_read_count(unsigned long segmentSize);
unsigned short calc_final_phys_read_size(unsigned long segmeniSize);
void show_upload_statistics(PLC540V_PCCC_ULA_RPY_TYPE *replyPacket);
void read_plc_to_file(unsigned long readAddr, FILE *out,

unsigned short readSize, unsigned short readCount);
void upload_is_complete(void);
void upload_all(PLC540V_PCCC_ULA_RPY_TYPE *replyPacket);
void get_edit_resource(void);
void return_edit_resource(void);
void restore_port_configuration(void);
void plc_in_remote_program_mode(void);
void check_for_faults(void);

A-16

MAINLINE /

Lo I N A T I T R N I N I N N I I N S I

PURPOSE: This is the main function for the upload demonstration
program. This program implements the algorithm to
successfully save the entire processor memory of the
PLC-5/40V to a disk file on the Radisys EPC-4. Please
note that this implementation will also save the current
port configurations so they can be restored as part of
the physical restore procedure.

INPUT: You must supply a filename on the command line. This name
will be used for the output file which is created on the
Radisys EPC-4. If the file already exists, it will be
overwritten without any warning!

OUTPUT: When this program exits to the shell (under normal and error
conditions), it will have created the output file which was
specified on the command line.

RETURNS: This program will return 1 to the DOS shell if there is an
error and O if the program completed normally.

EXAMPLE: upload procmem.sav <CR>
where:
procmen.sav is the output file
<CR> is a carrage return
BUILD ENVIRONENT:
Borland C++ 3.0 compiler
Use the UPLOAD.MAK makefile to buildthe executable.
EDIT HISTORY:

Copyright Allen-Bradley Company, Inc. 1994

main(int argc, char *argv[])

{

/I The segment pointers

unsigned short physicalReadCount = 0;
unsigned short finalPhysicalReadSize = 0;
unsigned long segmentSize = OL;
unsigned long readAddr = OL;

unsigned long endPointer = OL;

/I The reply packet from the physical bytes read
PLC540V_PCCC_ULA_RPY_TYPE replyPacket;

/I Loop counter
register int i;

/I The output file pointer
FILE *out;

/I Validate the command line...
if (argc '=2)

printf("\nUSAGE: upload save_file_name”);
exit(1);

Appendix A

Sample Applications

A-17

Appendix A

Sample Applications

/I Open the output file for saving PLC memory.
if ((out = fopen(argv[1], "w+b")) == NULL)
{

printf("\n\nFailed to open %s file”, argv[1]);
exit(1);
}

/I Make certain the processor is in remote program mode
plc_in_remote_program_mode();

/I Make certain there are no faults...
check_for_faults();

/I Get the edit resource from the processor.
get_edit_resource();

/I Ensure that the current port configuration will be saved in the
/I physical image.
restore_port_configuration();

/I lssue the upload all request.
upload_all(&replyPacket);

/I Show upload stats and dump the reply packet contents
printf("\n\nUpload all request was successful.”);
show_upload_statistics(&replyPacket);

/I Now let's read the PLC memory and write it to a file.

/I Let's get the starting address to read from and other

/I statistics. The PLC-5/V40 currently has only one segmeiit
readAddr = extract_start_pointer(replyPacket.data);

endPointer = extract_end_pointer(replyPacket.data);
segmentSize=calc_segment_size(readAddr, endPointer);
physicalReadCount=calc_physical_read_count(segmentSize);
finalPhysicalReadSize=calc_final_phys_read.size(segmentSize);

/I Let's upload each kReadSize chunk of memory from the
/I PLC and write it to disk. The final read may or may
/I not be necessary. It is handled cutside of this loop.

/I REMEMBER... PHYSICAL READ COUNT IS FOR THE NUMBER OF FULL READS...
//'YOU WILL STILL NEED TO DETERMINE IF AN ADDITIONAL ONE IS

/I NECESSARY FOR THE FINAL NON-FULL READ. FOR EXAMPLE, IF

/I YOU ARE GOING TO UPLOAD 101912 BYTES AND WILL BE READING

/I 244 BYTES AT A TIME,; YOU WILL PERFORM 417 FULL READS AND

/I ONE ADDITIONAL ONE OF 164 BYTES.

for (i=0; i<physicalReadCount; i++)

read_plc_to_file(readAddr, out, kReadSize, i+1);
readAddr = readAddr + kReadSize;

}

/I Determine if there are any left over bytes to read.

/I They may exist because the number of bytes wasn't an
/I exact multiple of kReadSize.

if (finalPhysicalReadSize != 0)

printf("\n\nFinal Physical Read Required:");

read_plc_to_file(readAddr, out,
finalPhysicalReadSize, i+1);

A-18

Appendix A

Sample Applications

printf("\n\nFinal Address: 0x%08.8Ix",
readAddr + finalPhysicalReadSize);
}

/I Close the output file
fclose(out);

/I Upload Complete command.
upload_is_complete();

/I Return the edit resource to the processor.
return_edit_resource();

printf("\n\nUpload was successfully completed.”);

return O;

/ PRIVATE FUNCTIONS /

/ /

/ GET_EDIT_RESOURCE /
/ /

void get_edit_resource(void)

{

/I This function will ask the processor for the edit resource.

PLC540V_PCCC_GER_RPY_TYPE replyPacket;
PLC540V_STATUS_TYPE status;

plc540v_pccc_get_edit_resource(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
&replyPacket;
&status);
if(status.plc540vStatus != 0)

printf("\nGetting the edit rescurce failed.”);
exit(1);

/ /
/ RETURN_EDIT_RESOURCE /
/ /
void return_edit_resource(void)
{
/I This function will attempt to return the edit resource to the
/I processor

PLC540V_PCCC_RER_RPY_TYPE replyPacket;
PLC540V_STATUS_TYPE status;

A-19

Appendix A

Sample Applications

plc540v_pccc_return_edit_resource(kvmeSlaveAddress,
kplc540vUla,
KVME_D16_DATA_WIDTH,
KVME_A24_ADDR_SPACE,

&replyPacket,
&status);
if(status.plc540vStatus != 0)
{
printf("\nReturning the edit resource failed.”);
exit(1);
}
}
/ /
/ RESTORE_PORT_CONFIGURATION

/ /

void restore_port_configuration(void)

{
/I This function will make certain that the current port configuration
I/l information FOR ALL THE CHANNELS is saved when a physical save is
/I performed.

PLC540V_PCCC_RPC_RPY_TYPE replyPacket;
PLC540V_STATUS_TYPE status;

plc540v_pccc_restore_port_config(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
&replyPacket,
&status);
if(status.plc540vStatus != 0)

printf("\nRestoring port configurations failed.”);
exit(1);

/ /

[rrkrkkxkkik PLC_IN_REMOTE_PROGRAM_MODE
/ /
void plc_in_remote_program_mode(void)

{

PLC540V_PCCC_IHAS_RPY_TYPE replyPacket;
PLC540V_PCCC_SCM_RPY. TYPE scmReplyPacket;
PLC540V_STATUS_TYPE status;
PLC540V_PCCC_SCM_CTLMODE_TYPE ctiIMode;

ctiMode.modeSelect=kPLC540V_SCM_PROGRAM_LOAD_MODE;

plc540v_pccc_id_host_and_status(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kKVME_A24_ADDR_SPACE,
&replyPacket,
&status);

if (status.plc540vStatus != 0)

printf("\nGetting the PLC’s keyswitch mode failed.”);
exit(1);

A-20

else

Appendix A

Sample Applications

if (replyPacket.plcStatus.keyswitchMode!=kPLC540V_REMOTE_PROGRAM_LOAD)

printf("\nPLC is not in remote program mode.”);

printf("\n\tAttempting to change its mode to program load...”);

plc540v_pccc_set_cpu_mode(kvmeSlaveAddress,

if (status.plc540vStatus != 0)
{
printf(" FAILED");
exit(1);

else
printf(" OK...");

kplc540vUla,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
ctiMode,

&scmReplyPacket,

&status);

CHECK_FOR_FAULTS

void check_for_faults(void)

{

/I This function will check the processor for any faults.

PLC540V_PCCC_IHAS_RPY_TYPE replyPacket;
PLC540V_STATUS_TYPE status;

plc540v_pccc_id_host_and_status(kvmeSlaveAddress,

if (status.plc540vStatus != 0)

else

kplc540vUla;,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
&replyPacket,

&status);

printf("\nChecking the PLC for faults failed.”);
exit(1);

/I Check for major faults...
if (replyPacket.plcStatus.majorFault != 0)

}

printf("\nProcessor has major faults so we cannot continue.”);

exit(1);

/I Check for bad RAM...
if (replyPacket.plcStatus.ramlinvalid != 0)

}

printf("\nProcessor has bad RAM so we cannot continue.”);

exit(1);

A-21

Appendix A

Sample Applications

/ /

/ EXTRACT_START_POINTER /
/ /

unsigned long extract_start_pointer(char far *data)

/I This function will extract the starting pointer to the segment.

unsigned long startPointer = OL;
unsigned long far *ptr = NULL;

/I Set a pointer to the first segment address and extract the long.
(char *) ptr = &data[1];
startPointer = *ptr;

return(startPointer);

}
/ /
/ EXTRACT_END_POINTER /
/ /
unsigned long extract_end_pointer(char far *data)
{
/I This function will extract the ending segment address.
unsigned long endPointer = OL;
unsigned long far *ptr = NULL;
/I Set a pointer to the second segment address and extract the long.
(char *) ptr = &data[5];
endPointer = *ptr;
return(endPointer);
}
/ /
/ CALC_SEGMENT_SIZE /

/ /
unsigned long calc_segment_size(unsigned long startPointer,
unsigned long endPointer)

{
/I Calculate the size of the segment.
return(endPointer - startPointer + 1);
}
/ /
/ CALC_PHYSICAL_READ_COUNT /

/ /
unsigned short calc_physical_read_count(unsigned long segmentSize)
{
/I Returns the number of physical reads which will be necessary
/I to read the entire segment. This calculation assumes that
/I we are reading kReadSize bytes at a time.

/I REMEMBER... THIS COUNT IS FOR THE NUMBER OF FULL READS...
/' YOU WILL STILL NEED TO DETERMINE IF AN ADDITIONAL ONE IS

/I NECESSARY FOR THE FINAL NON-FULL READ. FOR EXAMPLE, IF

/' YOU ARE GOING TO UPLOAD 101912 BYTES AND WILL BE READING
/I 244 BYTES AT A TIME, YOU WILL PERFORM 417 FULL READS AND
/I ONE ADDITIONAL ONE OF 164 BYTES.

return(segmentSize / kReadSize);

A-22

Appendix A

Sample Applications

/ /

/ CALC_FINAL_PHYS_READ_SIZE /
/ /
unsigned short calc_final_phys_read_size(unsigned long segmentSize)
{
/I Returns the number of bytes we will need to read to get the
/' last remaining bytes of memory. In other words, if the amount
/I of memory wasn’t an exact multiple of kReadSize.
return(segmentSize % kReadSize);
}
/ /
/ SHOW_UPLOAD_STATISTICS /

/ /
void show_upload_statistics(PLC540V_PCCC_ULA_RPY_TYPE *replyPacket)

// Dump upload statistics to the terminal.

unsigned long segmentSize = OL;
unsigned short physicalReadCount = 0;
unsigned short finalPhysicalReadSize = 0O;
unsigned long startPointer = OL;

unsigned long endPointer = OL;
PCCC_RPY_PKT_TYPE *replyPointer;
char *ptr;

/I Extract and calculate the upload parameters.

startPointer = extract_start_pointer(replyPacket->data);
endPointer = extract_end_pointer(replyPacket->data);
segmentSize=calc_segment_size(startPointer, endPointer);
physicalReadCount=calc_physical_read_count(segmentSize);
finalPhysicalReadSize=calc_final_phys_read_size(segmentSize);

/I Display the stats...

printf("\n\nUpload Statistics:");

printf("\n\tStart Pointer: 0x%08.8Ix", startPointer);

printf("\n\tEnd Pointer: 0x%08.8Ix", endPointer);

printf("\n\tSegment Size: 0x%08.8Ix (%Ilu)”, segmentSize, segmentSize);

printf("\n\tPhysical Read Count (w/o possible final read): 0x%04x (%u)”,
physicalReadCount, physicalReadCount);

printf("\n\tFinal Physical Read Size: 0x%04x (%u)”,
finalPhysicalReadSize, finalPhysicalReadSize);

ptr = (char *) replyPacket;
replyPointer = (PRCCC_RPY_PKT_TYPE *) ptr;

printf("\r\nReply Packet Contents:”);

printf("\n\tinh First Byte: %Xx”, replyPointer->InhFirstByte);
printf("\n\tinh_Second Byte: %x”, replyPointer->InhSecondByte);
printf("\n\tdst: %x”, replyPointer->dstRpyPkt);

printf("\n\tpsn: %x”, replyPointer->psn1RpyPkt);

printf("\n\tsrc: %x”, replyPointer->srcRpyPkt);

printf("\n\tpsn: %x”, replyPointer->psn2RpyPkt);
printf("\n\tcommand: %x”", replyPointer->command);
printf("\n\tremote error: %x", replyPointer->remoteError);
printf("\n\ttns: %x", replyPointer->tns);

/I The PLC-5/40V always responds with a single segment and its
/I compare segment. Let's dump their contents.
printf("\n\nMemory Segment Information:”);

printf("\n\tSegment 1 Ing: %x”, replyPointer->optionalData[0]);

A-23

Appendix A

Sample Applications

printf("\n\tSegment 1 Start Pointer: %x %x %x %x”,
replyPointer->optionalData[1],
replyPointer->optionalData[2],
replyPointer->optionalData[3],
replyPointer->optionalData[4]);

printf("\n\tSegment 1 End Pointer: %x %x %x %X”",
replyPointer->optionalData[5],
replyPointer->optionalData[6],
replyPointer->optionalData[7],
replyPointer->optionalData[8]);

printf("\n\tCompare 1 Ing: %x”, replyPointer->optionalData[9]);

printf("\n\tCompare 1 Start Pointer: %x %x %x %X",
replyPointer->optionalData[10],
replyPointer->optionalData[11],
replyPointer->optionalData[12],
replyPointer->optionalData[13]);

printf("\n\tCompare 1 End Pointer: %x %x %x %Xx",
replyPointer->optionalData[14],
replyPointer->optionalData[15],
replyPointer->optionalData[16],
replyPointer->optionalData[17]);

printf("\n\nUploading Log:\n");

/

/

/

READ_PLC_TO_FILE /

/

/

void read_plc_to_file(unsigned long readAddr, FILE *out,

{

A-24

unsigned short readSize, unsigned short readCount)

/I Read the specified memory and write it to the output file.

PLC540V_STATUS_TYPE status;
PLC540V_PCCC_RBP_RPY_TYPE replyPacket;
FILE_PACKET_TYPE filePacket;

/I Initialize the file packet
memset((char *) &filePacket, 0x0, sizeof(FILE_PACKET_TYPE));

/I Display the address we are reading.
printf("\n\tCnt: %d, Uploading Address: 0x%08.8Ix, Size: %d”,
readCount, readAddr, readSize);

/I Send the read command and wait for the reply
plc540v_pccc_read: bytes_physical(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kKVME_A24_ADDR_SPACE,
readAddr,
readSize,
&replyPacket,
&status);

if (status.plc540vStatus != 0)

{
printf("\n%s %s 0x%08.8Ix",
"Read Bytes Physical reply failed”,
"at address:”,
readAddr);
exit(1);
}
else
{

/I Write the read packet and address to
/I the output file.

Appendix A

Sample Applications

/I Save this read address in the file packet
filePacket.plcAddress = readAddr;

/I Save this read length in the file packet
filePacket.plcDatalLength = readSize;

/I Save the plc data into the file packet
memmove((char *) &filePacket.plcData,
(char *) &replyPacket.data[0],
readSize);
fwrite((char *) &filePacket, 1, sizeof(FILE_PACKET_TYPE), out);

/ UPLOAD_IS_COMPLETE /

void upload_is_complete(void)

{

/I Tell the processor that the upload is now completed.

PLC540V_PCCC_ULC_RPY_TYPE replyPacket;
PLC540V_STATUS_TYPE status;

plc540v_pccc_upload_complete(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kKVME_A24_ ADDR_SPACE,
&replyPacket,
&status);

if(status.plc540vStatus != 0)

printf("\nUpload Complete command failed.”);
exit(1);

/ /

/ UPLOAD_ALL /
/ /

void upload_all(PLC540V_PCCC. ULA_RPY_TYPE *replyPacket)

/' 1ssue the upload all request.
PLC540V_STATUS_TYPE status;

plc540v_pccc_upload_all(kvmeSlaveAddress,
kplc540vUla,
kKVME_D16_DATA_ WIDTH,
kKVME_A24 ADDR_SPACE,
replyPacket,
&status);

if(status.plc540vStatus != 0)

printf("\nUpload All command failed.”);
exit(1);

A-25

Appendix A

Sample Applications

UPLOAD.MAK
AUTODEPEND

Translator Definitions
CC = bcc +UPLOAD.CFG

TASM = TASM

TLIB =tlib

TLINK = tlink

LIBPATH = C:\BORLANDC\LIB
INCLUDEPATH = C:\BORLANDC\INCLUDE

Implicit Rules
.c.obj:
$(CC) -c {$<}

.cpp.obj:
$(CC) -c {$<}

List Macros

EXE_dependencies = \
p40vula.obj \
p40vulc.obj \
p40vrbp.obj \
p40vihas.obj \
p40vrpc.obj\
p40vrer.obj \
p40vger.obj \
common.obj \
p40vspcc.obj\
p40vscm.obj \
upload.obj \
{$(LIBPATH)}bmclib.lib

Explicit Rules
upload.exe: upload.cfg $(EXE_dependencies)
$(TLINK) v/x/n/P-/L$(LIBPATH) @&&|
c0l.obj+
p40vula.obj+
p40vulc.obj+
p40vrbp.obj+
p40vihas.obj+
p40vrpc.obj+
p40vrer.obj+
p40vger.obj+
common.obj+
p40vspcc.obj+
p40vscm.obj+
upload.obj
upload
no map file
bmclib.lib+
emu.lib+
mathl.lib+
cllib
I

Individual File Dependencies
p40vula.obj: upload.cfg p40Ovula.c

p40vulc.obj: upload.cfg p40vulc.c

p40vrbp.obj: upload.cfg p40vrbp.c

A-26

Appendix A

Sample Applications

p40vihas.obj: upload.cfg p40vihas.c
p40vrpc.obj: upload.cfg p40vrpc.c
p40vrer.obj: upload.cfg p4Ovrer.c
p40vger.obj: upload.cfg p40vger.c
common.obj: upload.cfg common.c
p40vspcc.obj: upload.cfg p40vspcc.c
p40vscm.obj: upload.cfg p40vscm.c
upload.obj: upload.cfg upload.cpp

Compiler Configuration File

upload.cfg: upload.mak
copy &&|

-ml

-V

.y.

-vi

-w-ret

-W-nci

-w-inl

-wpin

-wamb

-wamp

-w-par

-wasm

-wcln

-w-cpt

-wdef

-w-dup

-w-pia

-wsig

-wnod

-w-ill

-W-Sus

-wstv

-wucp

-wuse

-w-ext

-w-ias

-w-ibc

-w-pre

-w-nst

-I$(INCLUDEPATH)

-L$(LIBPATH)

-P

| upload.cfg

DOWNLOAD.CPP

/ /

/ INCLUDE FILES /
/ /
#include <stdio.h>

#include <stdlib.h>

#include <mem.h>

#include <string.h>

A-27

Appendix A

Sample Applications

#include "busmgr.h” /I Radisys’s VME driver definitions

#include "pccc.h” /I Generic Allen-Bradley (AB) PCCC definitions
#include "p40vger.h” /I AB PCCC Get Edit Resource

#include "p40vrer.h” /I AB PCCC Return Edit Resource

#include "p40vapc.h” /I AB PCCC Apply Port Configuration
#include "p40vwbp.h” /I AB PCCC Write Bytes Physical

#include "p40vihas.h” /I AB PCCC Id Host and Status

#include "p40vdla.h” /I AB PCCC Download All

#include "p40vdic.h” /I AB PCCC Download Complete

#include "p40vscm.h” /I AB PCCC Set CPU Mode

/ /

/ PRIVATE DEFINITIONS /

/ /
/I PLC-5/40V is using 0x900000 for VME communications.
const unsigned long kvmeSlaveAddress = 0x900000L;

/I PLC-5/40V is using ULAO which is OxFC00
const unsigned short kplc540vUla = OxFCOO;

/I This is the number of bytes to be written to the PLC-5/40V.
const unsigned short kWriteSize = kPLC540V_PCCC_MAX_WBP_DATA,;

/ /

/ PRIVATE TYPE DEFINITIONS /
/ /

/I The "bucket” that we are using to writing the PLC data, address and length
/I to the output file.

#pragma pack(1)

typedef struct

/I The PLC memory address
unsigned long plcAddress;

/I The number of bytes of PLC data in this packet.
unsigned short plcDatalLength;

/I The PLC data...

unsigned char plcData[kWriteSize];
JFILE_PACKET_TYPE;
#pragma pack()

;********************* PRIVATE FUNCTIONS DEFINITIONS ********i{**************/

/ /

void write_filepacket_to_ple(FILE_PACKET_TYPE *filePacket, UWORD writeCounter);
void download_is_compiete(void);

void download_all(void);

void get_edit_resource(void);

void return_edit_resource(void);

void apply_port_configuration(void);

void plc_in_remote_program_mode(void);

void check_for_faults(void);

/ MAINLINE /

A-28

~

ECE I R S I R I I S R I N N N N B N T N

PURPOSE: This is the main function for the download demonstration
program. This program implements the algorithm to
successfully restore the entire physical processor memory of
the PLC-5/40V from a disk file on the Radisys EPC-4. Please
note that this implementation will also restore the saved
port configurations.

INPUT: You must supply a filename on the command line. This name
is the image of processor memory which was created using
the upload sample application.

OUTPUT: When this program exits to the shell (under normal and error
conditions), it will have restored the processor's memory
and port configurations.

RETURNS: This program will return 1 to the DOS shell if there is an
error and O if the program completed normally.

EXAMPLE:
download procmem.sav <CR>

where:
procmen.sav is the processor image file
<CR> is a carrage return
BUILD ENVIRONENT:
Borland C++ 3.0 compiler
Use the DOWNLOAD.MAK makefile to build the executable.
EDIT HISTORY:

Copyright Allen-Bradley Company, Inc. 1994

main(int argc, char *argv[])

/I A "bucket” of information from the physical save image file.
FILE_PACKET_TYPE filePacket;

/I A counter of the number-of writes being done.
UWORD writeCounter = 1;

/I The output file pointer
FILE *in;

/I A flag indicating that more filePackets exist to be read from
/I the input file.
int moreFilePackets = 0;

/I Validate the command line...
if (argc '=2)

printf("\nUSAGE: download save_file_name”);
exit(1);
}

/I Open the input file for restoring PLC memory.
if ((in = fopen(argv[1], "r+b”)) == NULL)
{

printf("\n\nFailed to open %s file”, argv[1]);
exit(1);

Appendix A

Sample Applications

A-29

Appendix A

Sample Applications

/I Make certain the processor is in remote program mode
plc_in_remote_program_mode();

/I Make certain there are no faults...
check_for_faults();

I Issue the download all request.
download_all();

/I Let's read the file "bucket”...
memset((char *) &filePacket, 0x0, sizeof(FILE_PACKET_TYPE));

/I Now let’s attempt to read the first filePacket...
moreFilePackets = fread((char *) &filePacket, 1,
sizeof(FILE_PACKET_TYPE), in);

/' While there are filePackets to process... Let's do them!

while (moreFilePackets)

{
/I Let's download each kWriteSize chunk of memory from the
I/ file to the PLC.
write_filepacket_to_plc(&filePacket, writeCounter);
writeCounter++;

/I Let’s clear and read the file "bucket”...
memset((char *) &filePacket, 0x0, sizeof(FILE_PACKET_TYPE));
moreFilePackets = fread((char *) &filePacket, 1,
sizeof(FILE_PACKET_TYPE); in};
}

/I Close the input file
fclose(in);

/I Download Complete command.
download_is_complete();

/I Get the edit resource from the processor.
get_edit_resource();

/I Apply the port configuration
apply_port_configuration();

/I Return the edit resource to the processor.
return_edit_resource();

printf("\n\nDownload was successfully completed.”);

return O;
}
/ /
/ PRIVATE FUNCTIONS /
/ /
/ /
/ GET_EDIT_RESOURCE /

/ /
void get_edit_resource(void)

/I This function will ask the processor for the edit resource.

PLC540V_PCCC_GER_RPY_TYPE replyPacket;
PLC540V_STATUS_TYPE status;

A-30

plc540v_pccc_get_edit_resource(kvmeSlaveAddress,
kplc540vUla,
KVME_D16_DATA_WIDTH,
KVME_A24_ADDR_SPACE,

&replyPacket,
&status);
if(status.plc540vStatus != 0)
{
printf("\nGetting the edit resource failed.”);
exit(1);
}
}
/ /
/ RETURN_EDIT_RESOURCE

/ /
void return_edit_resource(void)
{

/I This function will attempt to return the edit resource to the

/I processor

PLC540V_PCCC_RER_RPY_TYPE replyPacket;
PLC540V_STATUS_TYPE status;

plc540v_pccc_return_edit_resource(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kKVME_A24_ADDR_SPACE,

&replyPacket,
&status);
if(status.plc540vStatus != 0)
{
printf("\nReturning the edit resource failed.”);
exit(1);
}
}
/ /
/ APPLY_PORT_CONFIGURATION

/ /
void apply_port_configuration(void)

/I This function will make certain that the port configuration

/I information FOR ALL THE CHANNELS is restored when a physical restore

/I is performed.

PLC540V_PCCC_APC RPY_TYPE replyPacket;
PLC540V_STATUS_TYRE status;

plc540v_pccc_apply_port_config(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
&replyPacket,
&status);
if(status.plc540vStatus != 0)

printf("\nApplying port configurations failed.”);
exit(1);

Appendix A

Sample Applications

A-31

Appendix A

Sample Applications

/ /
[ryiksxriddsasxisix P C_IN_REMOTE_PROGRAM_MODE /
/ /
void plc_in_remote_program_mode(void)
{
PLC540V_PCCC_IHAS_RPY_TYPE replyPacket;
PLC540V_PCCC_SCM_RPY_TYPE scmReplyPacket;
PLC540V_STATUS_TYPE status;
PLC540V_PCCC_SCM_CTLMODE_TYPE ctiMode;

ctiMode.modeSelect=kPLC540V_SCM_PROGRAM_LOAD_MODE;

plc540v_pccc_id_host_and_status(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kKVME_A24 ADDR_SPACE,
&replyPacket,
&status);

if (status.plc540vStatus != 0)

printf("\nGetting the PLC’s keyswitch mode failed.”);
exit(1);

else
if (replyPacket.plcStatus.keyswitchMode!=kPLC540V_REMOTE_PROGRAM_LOAD)

printf("\nPLC is not in remote program mode.”);
printf("\n\tAttempting to change its mode to program load...”);
plc540v_pccc_set_cpu_mode(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA WIDTH,
kKVME_A24_ADDR_SPACE,
ctiMode,
&scmReplyPacket,
&status);

if (status.plc540vStatus != 0)
{
printf(" FAILED”);
exit(1);

else
printf(" OK...");

/ CHECK_FOR_FAULTS /

void check_for_faults(void)

{

/I This function will check the processor for any faults.

PLC540V_PCCC_IHAS_RPY_TYPE replyPacket;
PLC540V_STATUS_TYPE status;

plc540v_pccec_id_host_and_status(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
&replyPacket,
&status);

A-32

if (status.plc540vStatus != 0)

{
printf("\nChecking the PLC for faults failed.”);
exit(1);
}
else
{
/I Check for major faults...
if (replyPacket.plcStatus.majorFault != 0)
printf("\nProcessor has major faults so we cannot continue.”);
exit(1);
}
/I Check for bad RAM...
if (replyPacket.plcStatus.raminvalid != 0)
printf("\nProcessor has bad RAM so we cannot continue.”);
exit(1);
}
}

/

/

/

WRITE_FILEPACKET_TO_PLC /

/

/

void write_filepacket_to_plc(FILE_PACKET_TYPE *filePacket, UWORD writeCounter)

{
/I Write the file packet to the PLC.
PLC540V_STATUS_TYPE status;
PLC540V_PCCC_WBP_RPY_TYPE replyPacket;
/I Display the address we are writing...
printf("\n\tCnt: %d, Downloading Address: 0x%08.8lx, Size: %u”,
writeCounter, filePacket->plcAddress, filePacket->plcDatalLength);
/I Send the write command and wait for the reply
plc540v_pccc_write_bytes_physical(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
filePacket->plcAddress,
&filePacket->plcData[0],
filePacket->plcDatalLength,
&replyPacket,
&status);
if (status.plc540vStatus != 0)
{
printf("\n%s %s 0x%08.8Ix",
"Write Bytes Physical reply failed”,
"at address:”,
filePacket->plcAddress);
exit(1);
}
}
/ /
/ DOWNLOAD_IS_COMPLETE /

/

void download_is_complete(void)

/I Tell the processor that the download is now completed.

Appendix A

Sample Applications

A-33

Appendix A

Sample Applications

PLC540V_PCCC_DLC_RPY_TYPE replyPacket;
PLC540V_STATUS_TYPE status;

plc540v_pccc_download_complete(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
&replyPacket,
&status);

if(status.plc540vStatus != 0)

{
printf("\nDownload Complete command failed.”);
exit(1);

/ DOWNLOAD_ALL

void download_all(void)

{

I Issue the download all request.

PLC540V_STATUS_TYPE status;
PLC540V_PCCC_DLA_RPY_TYPE replyPacket;

plc540v_pccc_download_all(kvmeSlaveAddress,
kplc540vUla,
kVME_D16_DATA_WIDTH,
kVME_A24_ADDR_SPACE,
&replyPacket,
&status);

if(status.plc540vStatus != 0)

printf("\nDownload All command failed.”);
exit(1);

DOWNLOAD.MAK
AUTODEPEND

Translator Definitions
CC = bcc +DOWNLOAD.CFG

TASM = TASM

TLIB = tlib

TLINK = tlink

LIBPATH = C:\BORLANDC\LIB
INCLUDEPATH = C:\BORLANDC\INCLUDE

Implicit Rules
.c.obj:
$(CC) -c {$<}

.cpp.obj:
$(CC) -c {$<}

List Macros

A-34

EXE_dependencies = \
p40vdla.obj \
p40vdic.obj \
p40vwbp.obj \
p40vihas.obj \
p40vapc.obj \
p40vrer.obj \
p40vger.obj \
common.obj \
p40vspcc.obj \
download.obj \
{$(LIBPATH)}bmclib.lib \
p40vscm.obj

Explicit Rules
download.exe: download.cfg $(EXE_dependencies)
$(TLINK) /v/x/n/P-/L$(LIBPATH) @&&|
c0l.obj+
p40vdla.obj+
p40vdic.obj+
p40vwbp.obj+
p40vihas.obj+
p40vapc.obj+
p40vrer.obj+
p40vger.obj+
common.obj+
p40vspcc.obj+
download.obj+
p40vscm.obj
download
no map file
bmclib.lib+
emu.lib+
mathl.lib+
cllib

Individual File Dependencies
p40vdla.obj: download.cfg p40vdla.c

p40vdic.obj: download.cfg p40vdic.c
p40vwbp.obj: download.cfg p40vwbp.c
p40vihas.obj: download.cfg p40vihas.c
p40vapc.obj: download.cfg p40vapc.c
p40vrer.obj: download.cfg. p40vrer.c
p40vger.obj: download.cfg p40vger.c
common.obj: download.cfg common.c
p40vspcc.obj: download.cfg p40vspcc.c
download.obj: download.cfg download.cpp

p40vscm.obj: download.cfg p40vscm.c

Appendix A

Sample Applications

A-35

Appendix A

Sample Applications

Compiler Configuration File

download.cfg: download.mak
copy &&|

-ml

-V

y

-vi

-w-ret

-wW-nci

-w-inl

-wpin

-wamb

-wamp

-w-par

-wasm

-wcln

-w-cpt

-wdef

-w-dup

-w-pia

-wsig

-wnod

-w-ill

-W-Sus

-wstv

-wucp

-wuse

-w-ext

-w-ias

-w-ibc

-w-pre

-w-nst

-I$(INCLUDEPATH)

-L$(LIBPATH)

-P

| download.cfg

A-36

Appendix Objectives

Appendix »

Sample Application Programming
Interface Modules

Read this appendix to understand how to write an-application programming
interface (API) module to interact with your PLC-5/VME processor.

The modules in this appendix are C-language programs that interact with
the PLC-5/VME processor.

A

ATTENTION: Because of the variety of uses for the functions

in these sample applications, the user and those responsible for
applying this information must satisfy themselves that all the
necessary.steps have been taken to ensure that the application of
this information meets all performance and safety requirements.
In no event shall Allen-Bradley Company, Inc. be responsible or
liable forindirect or consequential damages resulting from the
use or application of this information.

These sample applications are intended solely to illustrate the
principles of using PCCC commands, Radisys VME Driver, and
C programming. Allen-Bradley Company, Inc. cannot assume
responsibility or liability (to include intellectual property

liability) for actual use based on these samples.

Note: These sample APl modules are also available on the
Allen-Bradley SuppotPlus Bulletin Board [(216) 646-6728].
Download file VMEAPI.ZIP. This file also contains three
sample applications.

B-1

Appendix B

Sample API Modules

For this header file: Refer to page: For this source file: Refer to page:
COMMON.H B-3 COMMON.C B5
P40VCCO.H B-17 P40VCCO.C B-18
PCCCH B-30 PCCC.C B-32
PAOVHINTH B-32 P4OVHINT.C B-33
P40VSPCC.H B-39 P40VSPCC.C B-40
P40VWBP.H B-43 P40VWBP.C B-44
P40VAPC.H B-46 P4OVAPC.C B4
P40VULC H B-49 P4OVULC.C B850
P4OVDLAH B-52 P40VDLA.C B-53
P40VDLCH B-55 P40VDLC.C B-56
P4OVECHOH B-58 P4OVECHO.C B-59
P40VGERH B-61 P40VGER.C B-62
P4OVIHAS.H B-64 P4OVIHAS.C B-67
P40VRBPH B-69 | P40VRBP.C B-70
P4OVRERH B-72 " P4OVRER.C B-73
P4OVRMW.H B75 . | | P4OVRMW.C B-76
P4OVRPC.H B-80 P40VRPC.C B-81
P40VSCM.H | B-83 P40VSCM.C B-84
PAOVULAH %‘ B-86 P4OVULA.C B-87
Figure B.1
API Madule Dependencies
COMMONH
- |
P PCCC.H \
"
P4OVCCOH | PAOVHINTH
P4OVSPCC.H
P40VWBP.H P40VULC H P40VDLC H P4OVGERH P40VRBPH P4OVRMW.H P4OVSCM.H
P4OVAPC.H P4OVDLAH P4OVECHO.H P4OVIHASH P4OVRER.H P4OVRPC.H P4OVULAH

Dependencies for continuous-copy commands

Dependencies for PCCC commands

Dependencies for handling VME interrupt commands

B-2

COMMON.H

#ifndef COMMON_H
#define COMMON_H 1

[T LT T
1 Definitions for the COMMON USE THROUGHOUT THE API 1
[T T T

/* Macros to access the high and low word of an unsigned long. */
#define HIWORD(a) ((unsigned short) ((unsigned long) a >> 16))
#define LOWORD(a) ((unsigned short) ((unsigned long) a & 0xO000FFFF))

/I Common type definitions...
typedef unsigned char UBYTE;
typedef signed char SBYTE;
typedef unsigned short UWORD;
typedef signed short SWORD;
typedef unsigned long ULONG;
typedef signed long SLONG;

typedef unsigned char BOOL;
#define KTRUE 1
#define KFALSE 0

#pragma pack(1)
/ /

/ INTEL VERSION OF DEFINITIONS #*##kkkikikctokkkiiiionk |
/ /

typedef enum

KPLC540V_SUCCESS=0,
kPLC540V_FAILURE=257,
KPLC540V_READ_REGISTER_FAILED=258,
kPLC540V_WRITE_REGISTER_FAILED=259,
kPLC540V_NOT_READY=260,
kPLC540V_NOT_PASSED=261,
kPLC540V_COPY_CMDBLK_TO_VME_FAILED=262,
kPLC540V_CMDCTRL_WRDY_TIMEOUT=263,
kPLC540V_RESPONSE_TIMEOUT=264,
kPLC540V_COPY_PCCC_PACKET TO_VME_FAILED=265,
kPLC540V_GET_REPLYBLK.FROM_VME_FAILED=266,
kPLC540V_ELEMENT_COUNT TOO_LARGE=267,
KPLC540V_ILLEGAL_PCCC. DATA.ID=268,

} PLC540V_LIBRARY_STATUS TYPE;

typedef enum

kPLC540V_STATUS=0;
KEPC_STATUS=1,
kPCCC_STATUS=2,

} STATUS_CATEGORY_TYPE;

typedef union

UBYTE value;
struct

UBYTE localError:4;
UBYTE remoteError:4;
}statusFields;
} PCCC_STATUS_FIELDS_TYPE;

Appendix B

Sample API Modules

B-3

Appendix B

Sample API Modules

typedef struct
{
/* Indicates which type of error status is being returned. There are
three sources: EPC, PCCC or this library of routines.
*
STATUS_CATEGORY_TYPE statusCategory;

/* EPC Status Code */
int epcStatus;

/* PCCC Status Code */
PCCC_STATUS_FIELDS_TYPE pcccStatus;

/* PLC540V Library Status Codes */
PLC540V_LIBRARY_STATUS_TYPE plc540vStatus;
} PLC540V_STATUS_TYPE;

/I Register offsets in the PLC-5/40V

typedef enum

{
kPLC540V_ID_REG=0x0,
kPLC540V_DT_REG=0x2,
kPLC540V_SC_REG=0x4,
kPLC540V_OF_REG=0x6,
kPLC540V_CC_REG=0x8,
kPLC540V_CCL_REG=0xA,
kPLC540V_CH_REG=0xC,
kPLC540V_CL_REG=0xE,

} PLC540V_REGISTER_TYPE;

/I PLC-5/40V VME interrupt levels

typedef enum

{
kKVME_NO_INT_LEVEL= 0x0,
KVME_INT_LEVEL_1 = 0x1,
kKVME_INT_LEVEL_2 = 0x2,
KVME_INT_LEVEL_3 = 0x3,
KVME_INT_LEVEL_4 = 0x4,
kKVME_INT_LEVEL_5 = 0x5,
KVME_INT_LEVEL_6 = 0x6,
KVME_INT_LEVEL_7 = 0x7,

} VME_INTERRUPT_LEVEL_TYPE;

/* An array to hold the base address of each PLC-5/40V in VME space. */

/* The maximum number of installed PLC-5/40V’s permitted */

#define KINSTALLED_PLC540V_LIMIT 8

typedef ULONG LOCATED_PLC540V_ARRAY_TYPE[KINSTALLED_PLC540V_LIMIT];

/I Types of VME address modifiers supported by the PLC-5/40V
typedef enum

kVME_A16_ADDR_SPACE=0x2d,
kVME_A24_ADDR_SPACE=0x3d,
} VME_ADDRESS_MODIFIER_TYPE;

/I Standard VME data widths supported by the PLC-5/40V processor
typedef enum

KVME_D16_DATA_WIDTH=0,

KVME_DO08_DATA_ WIDTH=1,
} VME_DATA_WIDTH_TYPE;
#pragma pack()

B-4

Appendix B

Sample API Modules

I T
/I Common set of functions that are useful throughout the API...
I T
void find_all_plc540v_in_VME(LOCATED_PLC540V_ARRAY_TYPE plcList,
PLC540V_STATUS_TYPE *status);
void read_plc540v_register(UWORD baseAddress,
PLC540V_REGISTER_TYPE targetRegister,
UWORD *registerValue,
PLC540V_STATUS_TYPE *status);
void write_plc540v_register(UWORD baseAddress,
PLC540V_REGISTER_TYPE targetRegister,
UWORD registerValue,
PLC540V_STATUS_TYPE *status);
void plc540v_self_tested_ok(UWORD baseAddress,
PLC540V_STATUS_TYPE *status);
void poll_plc540v_until_response(ULONG vmeCmdBIkAddr,
VME_ADDRESS_MODIFIER_TYPE addrSpace,
PLC540V_STATUS_TYPE *status);
void plc540v_send_cmd(ULONG baseAddress,
ULONG vmeCmdBIkAddr,
VME_ADDRESS_MODIFIER_TYPE addrSpace,
PLC540V_STATUS_TYPE *status);
void plc540v_enable_shared_memory(ULONG baseAddress,ULONG vmeSharedRAMAddr,
PLC540V_STATUS_TYPE *status);
void plc540v_disable_shared_memory(ULONG baseAddress,
ULONG vmeSharedRAMAddr,
PLC540V_STATUS_TYPE *status);
#endif

COMMON.C

#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "common.h”

/ /

/ PRIVATE DEFINITIONS /
/ /

/* The manufacturer id for our PLC=5/40V. */

#define kPLC540V_MANUFACTURE .ID 0xOCFEC

/* The device type for our RLC-5/40V. */
#define KPLC540V_DEVICE_TYPE Ox7FE8

/* Minimum and Maximum base addresses for the PLC-5/40V'’s */
#define KPLC540V_MINIMUM_BASE_ADDRESS OxFCO00
#define kPLC540V_MAXIMUM_BASE_ADDRESS OxFDCO

/* The size (in kBytes) of the global memory on the PLC-5/40V. */
#define kPLC540V_GLOBAL_MEMORY_SIZE 0x0040

/* The PLC-5/40V status bits */
#define kPLC540V_READY 0x0008
#define kPLC540V_PASSED 0x0004

/* Timeout value for waiting for the PLC-5/40V to complete a command. */
#define KTIMEOUT_COUNT 16384

/* Mask for the command control register’s write ready bit. */
#define KCMDCTRL_WRDY 0x8000

B-5

Appendix B

Sample API Modules

/* Mask for the command control register’s error bit. */

#define KCMDCTRL_ERR 0x2000

#define KPLC540V_DEFAULT_RESPONSE 0x0000
#define KPLC540V_ENABLE_STATCTRL_SLE 0X8000
#define KPLC540V_DISABLE_STATCTRL_SLE OX7FFF

/* Offset Register Defines */
#define MK_OFFSET(a) ((unsigned short) (((unsigned long) a & OXO0OFF0000) >> 8))

static void poll_plc540v_cmdctrl_bits(ULONG baseAddress,
UWORD andMask,
PLC540V_STATUS_TYPE *status);

-

PURPOSE: This function will poll the specified bits (in the andMask)
in the command control register of the PLC-5/40V until they
are set or a timeout.

INPUT: ULONG baseAddress contains the base address of the PLC-5/40V.

UWORD andMask contains the bitmask which will be ANDed with
the command control register in order to determine if the
bits are set.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG baseAddress = OxFCO00;
UWORD andMask = 0x1;
PLC540V_STATUS_TYPE *status;
poll_plc540v_cmdctrl_bits(baseAddress,
andMask,
&status);

EE T R S I I T I S N R R

Copyright Allen-Bradley Company, Inc. 1993

static void poll_plc540v_cmdctrl_bits(ULONG baseAddress,
UWORD andMask,
PLC540V_STATUS_TYPE *status)

/* A 'loop counter: */
ULONG i;

/* The value read from the command control register. */
UWORD cmdctiReg = 0;

/* Let's initialize the status variable to success. */
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

B-6

Appendix B

Sample API Modules

/* Loop until we timeout or the bits are set. */

for (i=0;
((i<kTIMEOUT_COUNT) && (status->plc540vStatus == kPLC540V_SUCCESS));
i++)

read_plc540v_register(baseAddress, kPLC540V_CC_REG,
&cmdctlReg, status);
if (status->plc540vStatus == kPLC540V_SUCCESS)

/* Determine if the bit is set. */

if (cmdctiReg & andMask)
break;

}
if (i > KTIMEOUT_COUNT)
/* Signal that we timed out. */

status->plc540vStatus = kPLC540V_CMDCTRL_WRDY_TIMEOUT;
status->statusCategory = kPLC540V_STATUS;

PURPOSE: This function will examine the entire VME memory space to
locate all the PLC-5/40V’s which are installed.

INPUT: None

OUTPUT: LOCATED_PLC540V_ARRAY_TYPE *plcList will contain the base
addresses of each located PLC-5/40V. Any entries.in this
array which don’t have a PLC-5/40V will be zero.

PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
LOCATED_PLC540V_ARRAY _TYPE plcList;
PLC540V_STATUS_TYPE *status;
find_all_plc540v_in_VME(plcList, &status);

EE I S I R I I N I

Copyright Allen-Bradley Company, Inc. 1993

/

void find_all_plc540v_in.VME(LOCATED_PLC540V_ARRAY_TYPE plcList,
PLC540V_STATUS_TYPE *status)

{

/* The current base address which we are examining in VME space. */
UWORD baseAddress;

/* The current array entry to write an address into. */
UBYTE arrayIndex;

/* The manufacturer id for a located PLC-5/40V */
UWORD manld = 0;

/* The PLC-5/40V device type for a located PLC-5/40V */
UWORD devType = 0;

/* Let's initialize the array to have no located PLC-5/40V’s. */
memset((char *) plcList, 0x0, sizeof(LOCATED_PLC540V_ARRAY_TYPE));

B-7

Appendix B

Sample API Modules

/* Let’s initialize the status variable to success. */
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

/* Let's loop through the range of base addresses and see if a PLC-5/40V
is located. If one is found, then we will add it to the array.
*
for (baseAddress =kPLC540V_MINIMUM_BASE_ADDRESS, arraylndex = 0;
((baseAddress<=kPLC540V_MAXIMUM_BASE_ADDRESS) &&
(status->plc540vStatus == kPLC540V_SUCCESS));
baseAddress+=kPLC540V_GLOBAL_MEMORY_SIZE)

/* Read the manufacture-ID */
read_plc540v_register(baseAddress, kPLC540V_ID_REG, &manld, status);

* If we successfully read the manufacter id, then we’ll attempt to
read the PLC-5/40V’s device type.
*
/
if (status->plc540vStatus == kPLC540V_SUCCESS)

/* Read the PLC-5/40V’s device type. */
read_plc540v_register(baseAddress,kPLC540V_DT_REG,&devType,status);

if (status->plc540vStatus == kPLC540V_SUCCESS)
{
* Determine if this device is a PLC-5/40V */
if ((manld == kPLC540V_MANUFACTURE_ID) &&
(devType == kPLC540V_DEVICE_TYPE))

/* We've located a PLC-5/40V so let's
save its base address

*

/

plcList[arraylndex++] = baseAddress;

B-8

Appendix B

Sample API Modules

~

PURPOSE: This function will read a PLC-5/40V’s A16 configuration and
control register.

INPUT: UWORD baseAddress will contain the base address of the
PLC-5/40V.

PLC540V_REGISTER_TYPE targetRegister will contain the
particular PLC-5/40V register that will be read.

OUTPUT: UWORD *registerValue will contain the value read from the
specified target register.

PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
UWORD *regValue;
PLC540V_STATUS_TYPE status;
read_plc540v_register(0xOFCOO,
kPLC540V_ID_REG,
®Value,
&status);

Copyright Allen-Bradley Company, Inc. 1993

L T R S A I N N N N S I I S N

void read_plc540v_register(UWORD baseAddress,
PLC540V_REGISTER_TYPE targetRegister,
UWORD *registerValue,
PLC540V_STATUS_TYPE *status)

{
/* Let's initialize the status variable to success. */
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));
/* Let's read the word from the PLC-5/40V'’s register. */
status->epcStatus=EpcFromVmeAm((BM_MBO|A16S), BM_W16,
baseAddress+targetRegister,
(char far *) registerValue,
sizeof(UWORD));
if (status->epcStatus < 0)
status->statusCategory = KEPC_STATUS;
status->plc540yStatus = kPLC540V_READ_REGISTER_FAILED;
}
}

B-9

Appendix B

Sample API Modules

~

PURPOSE: This function will write to a PLC-5/40V’s A16 configuration or
control register.

INPUT: UWORD baseAddress will contain the base address of the
PLC-5/40V.

PLC540V_REGISTER_TYPE targetRegister will contain the
particular PLC-5/40V register that will be written.

UWORD registerValue will contain the value to be written
to the specified target register.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
UWORD regValue = 0x1234;
PLC540V_STATUS_TYPE status;
read_plc540v_register(0xOFCOO,
kPLC540V_OF _REG,
regValue,
&status);

Copyright Allen-Bradley Company, Inc. 1993

L T I S e I N R N T S I I S S I

/

void write_plc540v_register(UWORD baseAddress,
PLC540V_REGISTER_TYPE targetRegister,
UWORD registerValue,
PLC540V_STATUS_TYPE *status)

{
/* Let's initialize the status variable to success. */
memset((char *) status, 0x0, sizeof(PLC540V_STATUS TYPE));
/* Let's write the word to the PLC-5/40V’s register. */
status->epcStatus=EpcToVmeAm((BM_MBOJA16S), BM_W16,
(charfar *) ®isterValue,
baseAddress+targetRegister,
sizeof(UWORD));
if (status->epcStatus < 0)
status->statusCategory = KEPC_STATUS;
status->plc540vStatus = kPLC540V_WRITE_REGISTER_FAILED;
}
}

B-10

~

PURPOSE: This function will determine if a PLC-5/40V has successfully
completed its startup diagnostics validation routine. The
PLC-5/40V’'s STATUS/CONTROL register contains two flag bits:
RDY and PASSED. If both of these are asserted (high),
then the PLC-5/40V has passed its internal self-test. If
either or both of these bits are clear, then the PLC-5/40V
has detected internal faults and may not work properly.

INPUT: UWORD baseAddress will contain the base address of the
PLC-5/40V.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.
EXAMPLE:

PLC540V_STATUS_TYPE status;
plc540v_self tested_ok(OxOFCOQO, &status);

EE R S T N N N N N I N N N N N N

Copyright Allen-Bradley Company, Inc. 1993

/
void plc540v_self_tested_ok(UWORD baseAddress,

PLC540V_STATUS_TYPE *status)
{

/* The status/control register contents. */
UWORD statCtrl = 0;

/* Let’s initialize the status variable to success. */
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Lets obtain the status bits from the specified PLC-5/40V. */
read_plc540v_register(baseAddress, kPLC540V_SC_REG; &statCtrl, status);

if (status->plc540vStatus == kPLC540V_SUCCESS)

{
/* Let's determine if the READY and PASSED bits are set. */

if ((statCtrl & kPLC540V_READY) ==kPLC540V_READY)
if ((statCtrl & kPLC540V. PASSED) != kPLC540V_PASSED)

[* The PLC-5/40V didn't pass its self-test. */
status=>plc540vStatus = kPLC540V_NOT_PASSED;
status->statusCategory = kPLC540V_STATUS;
}
}
else

/* The PLC-5/40V is not ready to accept commands. */
status->plc540vStatus = kPLC540V_NOT_READY;
status->statusCategory = kPLC540V_STATUS;

}

Appendix B

Sample API Modules

B-11

Appendix B

Sample API Modules

~

PURPOSE: This function will continually poll the command block’s
response word to determine when the PLC-5/40V has completed
processing a command. When the response word becomes
non-zero OR if we time out then this function will return
to the caller.

INPUT: ULONG vmeCmdBIkAddr contains the VME address of the command
block.

VME_ADDRESS_MODIFIER_TYPE addrSpace contains an indicator
as to which address space contains the command block.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE: ULONG vmeCmdBIkAddr = 0x80000;
VME_ADDRESS_MODIFIER_TYPE addrSpace = kVME_A24_ADDR_SPACE;
PLC540V_STATUS_TYPE *status;
poll_plc540v_until_response(vmeCmdBIkAddr,

addrSpace,
&status);
Copyright Allen-Bradley Company, Inc. 1993

L I T I S R T R R

/

void poll_plc540v_until_response(ULONG vmeCmdBIkAddr,
VME_ADDRESS_MODIFIER_TYPE addrSpace,
PLC540V_STATUS_TYPE *status)

/* Poll the response word until it is non-zero. */
ULONG i;

/* The value read from the response word in the command block. */
UWORD response = 0;

/* Let’s initialize the status variable to success. */
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

/* Loop until we timeout or the response word is non-zero. */

for (i=0;
((i<kTIMEOUT_COUNT) && (status->plc540vStatus == kPLC540V_SUCCESS));
i++)

status->epcStatus = EpcFromVmeAm((UWORD) (BM_MBOJaddrSpace),
BM_W16,
vmeCmdBIkAddr+2,

(char far *) &response,
sizeof(UWORD));

if (status->plc540vStatus == kPLC540V_SUCCESS)
/* Determine if the reponse word has been changed. */
if (response != kPLC540V_DEFAULT_RESPONSE)
break;
}
if (i > KTIMEOUT_COUNT)
/* Signal that we timed out. */

status->plc540vStatus = kPLC540V_RESPONSE_TIMEOUT;
status->statusCategory = kPLC540V_STATUS;

B-12

Appendix B

Sample API Modules

PURPOSE: This function will transmit notification of a new command
block awaiting processing by the PLC-5/40V. Prior to calling
this function, the programmer must copy the command block
into VME memory.

INPUT: ULONG baseAddress contains the base address of the PLC-5/40V.

ULONG vmeCmdBIkAddr contains the VME address of the command
block.

VME_ADDRESS_MODIFIER_TYPE addrSpace contains an indicator
as to which address space contains the command block.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG baseAddress = OxFCO00;
ULONG vmeCmdBIkAddr = 0x80000;
VME_ADDRESS_MODIFIER_TYPE addrSpace = kVME_A24_ADDR_SPACE;
PLC540V_STATUS_TYPE *status;
plc540v_send_cmd(baseAddress,
vmeCmdBIkAddr,
addrSpace,
&status);

Copyright Allen-Bradley Company, Inc. 1993

EE S S I I N N N N N . N I R

void plc540v_send_cmd(ULONG baseAddress,
ULONG vmeCmdBIkAddr,
VME_ADDRESS_MODIFIER-TYPE addrSpace,
PLC540V_STATUS_TYPE *status)

/* The command word. */
ULONG command = 0;

[* The value read from the command control register. */
UWORD cmdctiReg = 0;

/* Let’s initialize the status variable to success. */
memset((char *) status, 0x0; sizeof(PLC540V_STATUS_TYPE));

* Build the command word. */
if (addrSpace == kVME.__A24_ADDR_SPACE)

command = 0x00000000L | (vmeCmdBIkAddr & OxO0FFFFFFL);
else

command = 0x01000000L | (vmeCmdBIkAddr & OXO000FFFFL);

B-13

Appendix B

Sample API Modules

/* The PLC-5/40V’s command/control register WRITE-READY bit
indicates when it is ready to accept a new command. We
will poll this bit until it is set or we timeout.
*
poll_plc540v_cmdctrl_bits(baseAddress, KCMDCTRL_WRDY, status);
if (status->plc540vStatus == kPLC540V_SUCCESS)
{

/* The PLC-5/40V command word is 32 bits wide. However, the VME
interface to the command word is only 16 bits wide so we must
write the command word as two 16 bit chunks. These words must
be written MSW and then LSW.

*

/

write_plc540v_register(baseAddress, kPLC540V_CH_REG,
HIWORD(command), status);

write_plc540v_register(baseAddress, kPLC540V_CL_REG,
LOWORD(command), status);

poll_plc540v_cmdctrl_bits(baseAddress, KCMDCTRL_WRDY, status);
if (status->plc540vStatus == kPLC540V_SUCCESS)

/* The PLC-5/40V has now started processing the command word.
We will chech the command control register's ERROR bit to
see if this command word caused any PLC-5/40V errors. If
so, we will extract the 8 bit error code from the command
control register.
*/
read_plc540v_register(baseAddress, kPLC540V_CC_REG,
&cmdctiReg, status);

if (status->plc540vStatus == KPLC540V_SUCCESS)
{

/* Determine if the bit is set. */
if (cmdctiReg & kCMDCTRL_ERR)

[* Extract the error code. */

status->plc540vStatus = cmdctlReg & Ox00FF;

status->statusCategory = kPLC540V_STATUS;
}

B-14

Appendix B

Sample API Modules

PURPOSE: This function will enable the 64K of shared RAM that is
present on the PLC-5/40V.

INPUT: ULONG baseAddress contains the base address of the PLC-5/40V.

ULONG vmeSharedRAMAddr contains the VME address of the
shared ram on the PLC-5/40V that is
specified in the baseAddress field.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG baseAddress = 0xFCO0O0;

ULONG vmeSharedRAMAddr = 0x60000;
PLC540V_STATUS_TYPE *status;
plc540v_enable_shared_memory(baseAddress,

vmeSharedRAMAddr,
&status);

E I N S I S S I I N R I N

Copyright Allen-Bradley Company, Inc. 1993

/

void plc540v_enable_shared_memory(ULONG baseAddress,
ULONG vmeSharedRAMAddr,
PLC540V_STATUS_TYPE *status)

UWORD offsetReg = 0;
UWORD statCtrIReg = 0;

[* Convert the VME shared RAM address to the OFFSET register format. */
offsetReg = MK_OFFSET(vmeSharedRAMAddr);

/* Write this value into the PLC-5/40V’s OFFSET register. */
write_plc540v_register(baseAddress,
kPLC540V_OF_REG,
offsetReg,
status);

if (status->plc540vStatus == kPLC540V_SUCCESS)

/* Now we must enable the PLC-5/40V’s shared memory. This is done
by setting the SLAVE ENABLE bit in the PLC-5/40V’s
STATUS/CONTROL register.
*/
read_plc540v_register(baseAddress, kPLC540V_SC_REG,
&statCtrIReg, status);
if (status->plc540vStatus == kPLC540V_SUCCESS)

statCtrIReg |= kPLC540V_ENABLE_STATCTRL_SLE;
write_plc540v_register(baseAddress,
kPLC540V_SC_REG,
statCtrlReg,
status);

B-15

Appendix B

Sample API Modules

PURPOSE: This function will disable the 64K of shared RAM that is
present on the PLC-5/40V.

INPUT: ULONG baseAddress contains the base address of the PLC-5/40V.

ULONG vmeSharedRAMAddr contains the VME address of the
shared ram on the PLC-5/40V that is specified in the
baseAddress field.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG baseAddress = 0xFCO0O0;
ULONG vmeSharedRAMAddr = 0x60000;
PLC540V_STATUS_TYPE *status;
plc540v_disable_shared_memory(baseAddress,
vmeSharedRAMAddr,
&status);

EE N R I S S I I N I S T

Copyright Allen-Bradley Company, Inc. 1993

/

void plc540v_disable_shared_memory(ULONG baseAddress,
ULONG vmeSharedRAMAddY,
PLC540V_STATUS_TYPE *status)

UWORD offsetReg = 0;
UWORD statCtrIReg = 0;

[* Convert the VME shared RAM address to the OFFSET register format. */
offsetReg = MK_OFFSET(vmeSharedRAMAddr);

/* Write this value into the PLC-5/40V’s OFFSET register. */
write_plc540v_register(baseAddress,
kPLC540V_OF_REG,
offsetReg,
status);

if (status->plc540vStatus == kPLC540V_SUCCESS)

/* Now we must enable the PLC-5/40V’s shared memory. This is done
by setting the SLAVE ENABLE bit in the PLC-5/40V’s
STATUS/CONTROL register.
#
read_plc540v_register(baseAddress, kPLC540V_SC_REG,
&statCtrIReg, status);
if (status->plc540vStatus == kPLC540V_SUCCESS)

statCtrIReg &= kPLC540V_DISABLE_STATCTRL_SLE;
write_plc540v_register(baseAddress,
kPLC540V_SC_REG,
statCtrlReg,
status);

B-16

Appendix B

Sample API Modules

P40VCCO.H

#ifndef P4OVCCO_H
#define PAOVCCO_H 1

[T LT T
1 Definitions for the CONTINUOUS COPY COMMAND STRUCTURE "
[T T T

#include "common.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/

/
typedef struct

UWORD addressModifier:8;
UWORD width:1;
UWORD reservedl:6;
UWORD enable:1;
} PLC540V_CC_TRANSFER_TYPE;

typedef struct

UWORD commandWord,;
UWORD responseWord;
UWORD cmdintLevel;
UWORD cmdStatusld;
UWORD reservedl[3];
PLC540V_CC_TRANSFER_TYPE transferinfo;
UWORD dataAddressHigh;
UWORD dataAddressLow;
UWORD dataSize;
UWORD fileNumber;
UWORD elementNumber;
UWORD operationintLevel;
UWORD operationStatusld;
UWORD reserved2;

} PLC540V_CONT_COPY_CMD_TYPE;

#pragma pack()

void plc540v_init_cont_copy_to. VME(ULONG vmeDataAddr,
UWORD vmeDataSize,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
UWORD fileNumber,
UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatusld,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,

PLC540V_STATUS_TYPE *status);

B-17

Appendix B

Sample API Modules

void plc540v_halt_cont_copy_to_VME(ULONG vmeDataAddr,
UWORD vmeDataSize,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
UWORD fileNumber,
UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdIntLevel,
UBYTE cmdStatusld,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status);

void plc540v_init_cont_copy_from_VME(ULONG vmeDataAddr,
UWORD vmeDataSize,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
UWORD fileNumber,
UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdIntLevel,
UBYTE cmdStatusld,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status);

void plc540v_halt_cont_copy_from_VME(ULONG vmeDataAddr,
UWORD vmeDataSize,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod;
UWORD fileNumber,
UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdlntLevel,
UBYTE cmdStatusld,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status);

#endif

P40VCCO.C

#include <string.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vcco.h”

/ /

/ PRIVATE DEFINITIONS /

/ /

/* The maximum number of bytes which can be transfered at one time to/from
VME and the PLC-5/40V.

*

/

#define kKPLC540V_MAX_TRANSFER_SIZE 248

B-18

Appendix B

Sample API Modules

/ /

/ PRIVATE TYPE DEFINITIONS /
/ /

typedef enum

kPLC540V_CONT_COPY_TO_VME=0x0001,
kPLC540V_CONT_COPY_FROM_VME=0x0002,
} PLC540V_CONT_COPY_COMMAND:;

typedef enum

kPLC540V_CONT_COPY_DISABLE=0x0,
kPLC540V_CONT_COPY_ENABLE=0x1,
} PLC540V_CONT_COPY_MODE;

/ /

/ PRIVATE FUNCTIONS /

/ /

void plc540v_cont_copy(PLC540V_CONT_COPY_COMMAND ccCmd,
PLC540V_CONT_COPY_MODE ccMode,
ULONG vmeDataAddr,

UWORD vmeDataSize,

ULONG vmeCmdBIkAddr,

UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
UWORD fileNumber,

UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatuslid,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status);

PURPOSE: This function configures the PLC-5/40V to continuously copy
processor file memory to VME memory once per scan cycle in
the processor.

INPUT: ULONG vmeDataAddr contains the VME address where the
processor file memory will be written-into.

UWORD vmeDataSize contains the number of 16 bit words which
will be written.

ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. It can be A16 or A24.

UWORD fileNumber contains the PLC-5/40V data file number
which will be continuously read from for the data transfer.

Lo I R S N N S N R I S T

B-19

Appendix B

Sample API Modules

UWORD elementNumber contains the element number in the
PLC-5/40V data table file at which the data transfer is to
begin.

VME_INTERRUPT_LEVEL_TYPE cmdintLevel contains the VME bus
interrupt to be generated by the PLC-5/40V AFTER storing

its response in the response word of the command block AFTER
COMMAND completion. If kVME_NO_INT_LEVEL is specified, then
no VME bus interrupts will be generated.

UBYTE cmdStatusld contains a unique value which will be used
by the interrupted host processor to run a specific

interrupt service routine. This variable must be set to

zero if you are NOT using any command interrupts.

VME_INTERRUPT_LEVEL_TYPE operationintLevel contains the VME
bus interrupt to be generated by the PLC-5/40V AFTER each

copy OPERATION. If kVME_NO_INT_LEVEL is specified, then

no VME bus interrupts will be generated.

UBYTE operationStatusld contains a unique value which will
be used by the interrupted host processor to run a specific
interrupt service routine. This variable must be set to

zero if you are NOT using any operation interrupts.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:

ULONG vmeDataAddr = 0x80000;
UWORD vmeDataSize = 0x100;
ULONG vmeCmdBIkAddr = 0x90000;
UWORD baseAddress = 0xFCOO0;
VME_DATA_WIDTH_TYPE width =kVME_D16_DATA WIDTH;
VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A16_ADDR_SPACE;
UWORD fileNumber =11;
UWORD elementNumber =20;
VME_INTERRUPT_LEVEL_TYPE cmdintLevel = kVME_NO_INT_LEVEL;
UBYTE cmdStatusld =0;
VME_INTERRUPT_LEVEL_TYPE operationintLevel=kVME_NO_INT_LEVEL;
UBYTE operationStatusld =0;
PLC540V_STATUS_TYPE status;
plc540v_init_cont_copy_to_ VME(

vmeDataAddr,

vmeDataSize,

vmeCmdBIkAddr,

baseAddress,

width,

addrMod,

fileNumber,

elementNumber,

cmdintLevel,

cmdStatusld,

operationintLevel,

operationStatusld,

&status);

Copyright Allen—Bradley Company, Inc. 1993

L S S I T N I N I T I I N N N I N R A B N N N . N B T N R R N N

B-20

Appendix B

Sample API Modules

void plc540v_init_cont_copy_to_VME(ULONG vmeDataAddr,
UWORD vmeDataSize,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
UWORD fileNumber,
UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatuslid,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status)

plc540v_cont_copy(kPLC540V_CONT_COPY_TO_VME,
kPLC540V_CONT_COPY_ENABLE,
vmeDataAddr,
vmeDataSize,
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
fileNumber,
elementNumber,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
status);

PURPOSE: This function configures the PLC-5/40V to stop the
continuously copy of processor file memory to VME memory.
The input parameters MUST be identical to the ones used in
the plc540v_init_cont_copy_to_VME() function call.

INPUT: ULONG vmeDataAddr contains the VME address where the
processor file memory will be written into.

UWORD vmeDataSize contains the number of 16 bit words which
will be written.

ULONG vmeCmdBIkAddr contains the VME address where the
command block will'be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_ WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or D08.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. It can be A16 or A24.

UWORD fileNumber contains the PLC-5/40V data file number
which will be continuously read from for the data transfer.

UWORD elementNumber contains the element number in the
PLC-5/40V data table file at which the data transfer is to
begin.

L I S R I N I N I A R N N N N N S I

B-21

Appendix B

Sample API Modules

VME_INTERRUPT_LEVEL_TYPE cmdintLevel contains the VME bus
interrupt to be generated by the PLC-5/40V AFTER storing

its response in the response word of the command block AFTER
COMMAND completion. If kVME_NO_INT_LEVEL is specified, then
no VME bus interrupts will be generated.

UBYTE cmdStatusld contains a unique value which will be used
by the interrupted host processor to run a specific

interrupt service routine. This variable must be set to

zero if you are NOT using any command interrupts.

VME_INTERRUPT_LEVEL_TYPE operationintLevel contains the VME
bus interrupt to be generated by the PLC-5/40V AFTER each

copy OPERATION. If kVME_NO_INT_LEVEL is specified, then

no VME bus interrupts will be generated.

UBYTE operationStatusld contains a unique value which will
be used by the interrupted host processor to run a specific
interrupt service routine. This variable must be set to

zero if you are NOT using any operation interrupts.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeDataAddr = 0x80000;
UWORD vmeDataSize = 0x100;
ULONG vmeCmdBIkAddr = 0x90000;
UWORD baseAddress = OxFCO0;
VME_DATA_WIDTH_TYPE width =kVME_D16_DATA WIDTH;
VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_Al16_ADDR_SPACE;
UWORD fileNumber =11;
UWORD elementNumber =20;
VME_INTERRUPT_LEVEL_TYPE cmdintLevel = kVME_NO_INT_LEVEL;
UBYTE cmdStatusld =0;
VME_INTERRUPT_LEVEL_TYPE operation|ntLevel=kVME_NO_INT_LEVEL;
UBYTE operationStatusld =0;

PLC540V_STATUS_TYPE status;

plc540v_halt_cont_copy_to VME(
vmeDataAddr,
vmeDataSize,
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
fileNumber,
elementNumber,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
&status);

E S I R N N N I T I I N N R N N S S I I B I N R R I R B R N R

Copyright Allen—-Bradley Company, Inc. 1993

B-22

Appendix B

Sample API Modules

void plc540v_halt_cont_copy_to_VME(ULONG vmeDataAddr,
UWORD vmeDataSize,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
UWORD fileNumber,
UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatuslid,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status)

plc540v_cont_copy(kPLC540V_CONT_COPY_TO_VME,
kPLC540V_CONT_COPY_DISABLE,
vmeDataAddr,
vmeDataSize,
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
fileNumber,
elementNumber,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
status);

PURPOSE: This function configures the PLC-5/40V to continuously copy
from VME memory to processor file memory once per scan cycle
in the processor.

INPUT: ULONG vmeDataAddr contains the VME address where the
VME memory will be read from.

UWORD vmeDataSize contains the number of 16 bit words which
will be read.

ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. It can be A16 or A24.

UWORD fileNumber contains the PLC-5/40V data file number
which will be continuously read from for the data transfer.

UWORD elementNumber contains the element number in the
PLC-5/40V data table file at which the data transfer is to
begin.

EEE S I I N N I I R S N N N N N B .

B-23

Appendix B

Sample API Modules

VME_INTERRUPT_LEVEL_TYPE cmdintLevel contains the VME bus
interrupt to be generated by the PLC-5/40V AFTER storing

its response in the response word of the command block AFTER
COMMAND completion. If kVME_NO_INT_LEVEL is specified, then
no VME bus interrupts will be generated.

UBYTE cmdStatusld contains a unique value which will be used
by the interrupted host processor to run a specific

interrupt service routine. This variable must be set to

zero if you are NOT using any command interrupts.

VME_INTERRUPT_LEVEL_TYPE operationintLevel contains the VME
bus interrupt to be generated by the PLC-5/40V AFTER each

copy OPERATION. If kVME_NO_INT_LEVEL is specified, then

no VME bus interrupts will be generated.

UBYTE operationStatusld contains a unique value which will
be used by the interrupted host processor to run a specific
interrupt service routine. This variable must be set to

zero if you are NOT using any operation interrupts.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeDataAddr = 0x80000;
UWORD vmeDataSize = 0x100;
ULONG vmeCmdBIkAddr = 0x90000;
UWORD baseAddress = OxFCO0;
VME_DATA_WIDTH_TYPE width =kVME_D16_DATA WIDTH;
VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_Al16_ADDR_SPACE;
UWORD fileNumber =11;
UWORD elementNumber =20;
VME_INTERRUPT_LEVEL_TYPE cmdintLevel = kVME_NO_INT_LEVEL;
UBYTE cmdStatusld =0;
VME_INTERRUPT_LEVEL_TYPE operation|ntLevel=kVME_NO_INT_LEVEL;
UBYTE operationStatusld =0;

PLC540V_STATUS_TYPE status;

plc540v_init_cont_copy_from VME(
vmeDataAddr,
vmeDataSize,
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
fileNumber,
elementNumber,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
&status);

E I R N I I S T N I N N N N N I S I R I N R T S I R N R N

Copyright Allen—-Bradley Company, Inc. 1993

B-24

Appendix B

Sample API Modules

void plc540v_init_cont_copy_from_VME(ULONG vmeDataAddr,
UWORD vmeDataSize,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
UWORD fileNumber,
UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatuslid,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status)

plc540v_cont_copy(kPLC540V_CONT_COPY_FROM_VME,
kPLC540V_CONT_COPY_ENABLE,
vmeDataAddr,
vmeDataSize,
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
fileNumber,
elementNumber,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
status);

PURPOSE: This function configures the PLC-5/40V to stop the
continuously copy of VME memory to processor file memory.
The input parameters MUST be identical to the ones used in
the plc540v_init_cont_copy_from_VME() function call.

INPUT: ULONG vmeDataAddr contains the VME address where the
VME memory will be read from.

UWORD vmeDataSize contains the number of 16 bit words which
will be written.

ULONG vmeCmdBIkAddr contains the VME address where the
command block will'be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_ WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or D08.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. It can be A16 or A24.

UWORD fileNumber contains the PLC-5/40V data file number
which will be continuously read from for the data transfer.

UWORD elementNumber contains the element number in the
PLC-5/40V data table file at which the data transfer is to
begin.

L I S N S R N N N I A . N I N N S .

B-25

Appendix B

Sample API Modules

VME_INTERRUPT_LEVEL_TYPE cmdintLevel contains the VME bus
interrupt to be generated by the PLC-5/40V AFTER storing

its response in the response word of the command block AFTER
COMMAND completion. If kVME_NO_INT_LEVEL is specified, then
no VME bus interrupts will be generated.

UBYTE cmdStatusld contains a unique value which will be used
by the interrupted host processor to run a specific

interrupt service routine. This variable must be set to

zero if you are NOT using any command interrupts.

VME_INTERRUPT_LEVEL_TYPE operationintLevel contains the VME
bus interrupt to be generated by the PLC-5/40V AFTER each

copy OPERATION. If kVME_NO_INT_LEVEL is specified, then

no VME bus interrupts will be generated.

UBYTE operationStatusld contains a unique value which will
be used by the interrupted host processor to run a specific
interrupt service routine. This variable must be set to

zero if you are NOT using any operation interrupts.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeDataAddr = 0x80000;
UWORD vmeDataSize = 0x100;
ULONG vmeCmdBIkAddr = 0x90000;
UWORD baseAddress = OxFCO0;
VME_DATA_WIDTH_TYPE width =kVME_D16_DATA WIDTH;
VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_Al16_ADDR_SPACE;
UWORD fileNumber =11;
UWORD elementNumber =20;
VME_INTERRUPT_LEVEL_TYPE cmdintLevel = kVME_NO_INT_LEVEL;
UBYTE cmdStatusld =0;
VME_INTERRUPT_LEVEL_TYPE operation|ntLevel=kVME_NO_INT_LEVEL;
UBYTE operationStatusld =0;

PLC540V_STATUS_TYPE status;

plc540v_halt_cont_copy_from_VME(
vmeDataAddr,
vmeDataSize,
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
fileNumber,
elementNumber,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
&status);

E I R N I I S T N I N N N N N I S I R I N R T S I R N R N

Copyright Allen—-Bradley Company, Inc. 1993

B-26

Appendix B

Sample API Modules

void plc540v_halt_cont_copy_from_VME(ULONG vmeDataAddr,
UWORD vmeDataSize,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
UWORD fileNumber,
UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatuslid,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status)

plc540v_cont_copy(kPLC540V_CONT_COPY_FROM_VME,
kPLC540V_CONT_COPY_DISABLE,
vmeDataAddr,
vmeDataSize,
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
fileNumber,
elementNumber,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
status);

PURPOSE: This function configures the PLC-5/40V to continuously copy.
This function is private to this file and is common to all
the continuous copy functions: Initiate continous copy to VME,
Initiate continuous copy from VME, Halt continuous copy to
VME and Halt continuous copy from VME.

INPUT: PLC540V_CONT_COPY_COMMAND cc€md contains the continuous copy
command which should be issued to the PLC-5/40V: continuous
copy to VME or continuous copy ‘from VME.

PLC540V_CONT_COPY_MODE ccMode contains the mode of the
continous copy command which is being sent to the PLC-5/40V:
enable or disable continous copy.

ULONG vmeDataAddr contains the VME address where the
processor file.-memory. will be written into.

will be written.

ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* UWORD vmeDataSize contains the number of 16 bit words which
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* in which the VME data is accessed. It can be A16 or A24.
*

B-27

L I I N S N I I N N N I A S I . S S N R SN S N N N I I N S . N N N N . N N . S S S

Appendix B

Sample API Modules

UWORD fileNumber contains the PLC-5/40V data file number
which will be continuously read from for the data transfer.

UWORD elementNumber contains the element number in the
PLC-5/40V data table file at which the data transfer is to
begin.

VME_INTERRUPT_LEVEL_TYPE cmdintLevel contains the VME bus
interrupt to be generated by the PLC-5/40V AFTER storing

its response in the response word of the command block AFTER
COMMAND completion. If kVME_NO_INT_LEVEL is specified, then
no VME bus interrupts will be generated.

UBYTE cmdStatusld contains a unique value which will be used
by the interrupted host processor to run a specific

interrupt service routine. This variable must be set to

zero if you are NOT using any command interrupts.

VME_INTERRUPT_LEVEL_TYPE operationintLevel contains the VME
bus interrupt to be generated by the PLC-5/40V AFTER each

copy OPERATION. If kVME_NO_INT_LEVEL is specified, then

no VME bus interrupts will be generated.

UBYTE operationStatusld contains a unique value which will
be used by the interrupted host processor to run a specific
interrupt service routine. This variable must be set to

zero if you are NOT using any operation interrupts.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status

of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:

PLC540V_CONT_COPY_COMMAND ccCmd=kPLG540V_CONT_COPY_TO_VME;
PLC540V_CONT_COPY_MODE ccMode=kPLC540V_CONT_COPY_ENABLE;

ULONG vmeDataAddr = 0x80000;

UWORD vmeDataSize = 0x100;

ULONG vmeCmdBIkAddr = 0x90000;

UWORD baseAddress = OxFCO0;

VME_DATA_WIDTH_TYPE width =kVME_D16_DATA_ WIDTH;
VME_ADDRESS_MODIFIER_TYPE addrMod =kVME_A16_ADDR_SPACE;
UWORD fileNumber =11;

UWORD elementNumber = 20;

VME_INTERRUPT_LEVEL TYPE cmdintLevel =KkVME_NO_INT_LEVEL;
UBYTE cmdStatusld =0;

VME_INTERRURPRT LEVEL_TYPE operationintLevel=kVME_NO_INT_LEVEL;
UBYTE operationStatusld =0;

PLC540V_STATUS_TYPE status;

plc540v_cont_copy(ccCmd,
ccMode,
vmeDataAddr,
vmeDataSize,
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
fileNumber,
elementNumber,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
&status);

Copyright Allen—-Bradley Company, Inc. 1993

B-28

Appendix B

Sample API Modules

static void plc540v_cont_copy(PLC540V_CONT_COPY_COMMAND ccCmd,
PLC540V_CONT_COPY_MODE ccMode,
ULONG vmeDataAddr,
UWORD vmeDataSize,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
UWORD fileNumber,
UWORD elementNumber,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatusld,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status)

/* The continuous copy command block. */
static PLC540V_CONT_COPY_CMD_TYPE ccCmdBIK;

/* The continuous copy to VME buffer. */
static UBYTE toVMEBUf[kPLC540V_MAX_TRANSFER_SIZE];

/* Let’s initialize the continuous copy command block to be empty. */
memset((char *) &ccCmdBIk, 0x0, sizeof(PLC540V_CONT_COPY_CMD_TYPE));

/* Let's initialize the continuous copy to VME buffer. */
memset((char *) &oVMEBUf, 0x0, kPLC540V_MAX_TRANSFER_SIZE);

/* Let’s initialize the status variable to success. */
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

/* Build the command block. */
ccCmdBlk.commandWord = ccCmd;
ccCmdBlk.responseWord = 0;

ccCmdBIk.cmdintLevel = cmdIntLevel;
ccCmdBIk.cmdStatusld = cmdStatusld,;
ccCmadBIk.transferinfo.addressModifier = addrMod;
ccCmdBIk.transferinfo.width = width;
ccCmdBIk.transferinfo.enable = ccMode;
ccCmdBlk.dataAddressHigh = HIWORD(vmeDataAddr);
ccCmdBlk.dataAddressLow = LOWORD (vmeDataAddr);
ccCmdBlk.dataSize = vmeDataSize;
ccCmdBIk.fileNumber = fileNumber;
ccCmdBIk.elementNumber = elerentNumber;
ccCmdBlk.operationintlevel =operationintLevel;
ccCmdBIk.operationStatusld = operationStatusld;

/* Copy the command block to VME memory. */
status—>epcStatus = EpcToVmeAm((BM_MBO|A24SD),
BM_W16,
(char far *) &ccCmdBIK,
vmeCmdBIkAddr,
sizeof(PLC540V_CONT_COPY_CMD_TYPE));
if (status—>epcStatus == EPC_SUCCESS)
{
/* Send the command block address to the PLC-5/40V’'s command
register.
*/
plc540v_send_cmd(baseAddress, vmeCmdBIkAddr, kVME_A24_ADDR_SPACE,
status);

B-29

Appendix B

Sample API Modules

if (status—>plc540vStatus == kPLC540V_SUCCESS)

/* If sending the command block address didn't fail, then the
PLC-5/40V has started processing the command.

If the user of this function hasn'’t set up any VME interrupts
to be generated, then we will poll the PLC-5/40V until the
its done processing the command. This is indicated by a
non-zero value in the response word of the command block.

If the user has set up VME interrupts, then we will simply
return to the caller.
*
if ((cmdintLevel == kVME_NO_INT_LEVEL) &&
(operationintLevel == KVME_NO_INT_LEVEL))

{
* Let's poll the PLC-5/40V until its done. */
poll_plc540v_until_response(vmeCmdBIkAddr,
kVME_A24_ADDR_SPACE,
status);
}
}
}
else
{
/* Signal that we have an EPC error. */
status—>plc540vStatus = kPLC540V_COPY_CMDBLK_TO_VME_FAILED;
status—>statusCategory = KEPC_STATUS;
}
}
PCCCH

#ifndef PCCC_H
#define PCCC_H

T T TR T T
1 Common definitions for the ALLEN-BRADLEY PCCC COMMANDS 1
T T T T

#include "common.h”

typedef unsigned char BOOL;
const BOOL kFalse = 0;
const BOOL kTrue = 1;

B-30

Appendix B

Sample API Modules

/*

*%

** Structure of the Send PCCC Command Block. This is used to communicate
** any PCCC command to the PLC.

*/

#pragma pack(1)

typedef struct

{
unsigned short commandWord,; /*0 :command word */
unsigned short responseWord; /1 :command response */
unsigned short interruptLevel; /*2 :completion intr */
unsigned short interruptStatusiD; /*3 : completion statid */
unsigned short reserved0[3]; /*4-6 :unused */
unsigned short transfer_info; [*7 : xfer parameters */
unsigned short packetAddrHigh; /*8 : packet address hi */
unsigned short packetAddrLow; /*9 :packet address lo */
unsigned short packetSize; /*10 : packet size */
unsigned short reserved2[4]; /*11-14 : unused */
unsigned short reservedi; /*15 :unused */

JPCCC_SEND_CMD_TYPE;

/*

**%

** Structure of Command Packet. This packet contains command specific
** information which is attached to a PCCC_SEND_CMD_TYPE.

*

typedef struct

unsigned char dstCmdPkt; /* Reserved */
unsigned char psn1CmdPkt; /* Reserved */
unsigned char srcCmdPkt; /* Reserved */
unsigned char psn2CmdPkt; /* Reserved */
unsigned char command; /* packet command */
unsigned char sts; /* Reserved */
unsigned short tns;

unsigned char
unsigned char

functionCode; /* extended function code */
optionalData[243]; /* packet data */

JPCCC_CMD_PKT_TYPE;
/*

** Structure of Reply Packet

**k

*/

typedef struct

{

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned short
unsigned char
unsigned char

InhFirsiByte; /* reply packet length high */
InhSecondByte; /* reply packet length low */

dstRpyPkt; /* Reserved */
psn1RpyPkt; /* Reserved */
srcRpyPkt; /* Reserved */
psn2RpyPkt; /* Reserved */
command; /* packet command */

remoteError; /* packet return code */

tns; [* sequence number */
extSts; /* extended status */

optionalData[243]; /* packet data */

JPCCC_RPY_PKT_ES_TYPE;

B-31

Appendix B

Sample API Modules

typedef struct

{
unsigned char InhFirstByte; /* reply packet length high */

unsigned char InhSecondByte; /* reply packet length low */

unsigned char dstRpyPkt; /* Reserved */
unsigned char psn1RpyPkt; /* Reserved */

unsigned char srcRpyPkt; /* Reserved */

unsigned char psn2RpyPkt; /* Reserved */

unsigned char command; /* packet command */

unsigned char remoteError; /* packet return code */

unsigned short tns; /* sequence number */

unsigned char optionalData[243]; /* packet data */
}PCCC_RPY_PKT_TYPE;

#pragma pack()

/I The size of each of these pccc types

const unsigned long kPCCC_SEND_CMD_SIZE = sizeof(PCCC_SEND_CMD_TYPE);
const unsigned long kPCCC_CMD_PKT_SIZE = sizeof(PCCC_CMD_PKT_TYPE);
const unsigned long kPCCC_RPY_PKT_SIZE = sizeof(PCCC_RPY_PKT_TYPE);

const unsigned long kPCCC_RPY_PKT_ES_SIZE = sizeof(PCCC_RPY_PKT_ES_TYPE);

/I The offset to each of these pccc types in the VME image

const unsigned long kPCCC_SEND_CMD_OFF = 0XO0L;
const unsigned long kPCCC_CMD_PKT_OFF = kPCCC_SEND_CMD_SIZE;
const unsigned long kPCCC_RPY_PKT_OFF = kPCCC_SEND_CMD_SIZE +

kPCCC_CMD_PKT_SIZE;
const unsigned long kPCCC_RPY_PKT_ES_OFF = kPCCC_SEND_CMD_SIZE +
kPCCC_CMD_PKT SIZE;

#endif

P40VHINT.H

#ifndef PAOVHINT_H
#define PAOVHINT_H 1

T T
I Definitions for the HANDLE INTERRUPTS COMMAND STRUCTURE I
T T

#include "common.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS ##xikiiksokioioksoick |
/

/
typedef struct
UWORD reserved:15;

UWORD enable:1;
} PLC540V_HINT_TRANSFER_TYPE;

B-32

Appendix B

Sample API Modules

typedef struct

{
UWORD commandWord;
UWORD responseWord;
UWORD cmdintLevel;
UWORD cmdStatusld;
UWORD reservedl[3];
PLC540V_HINT_TRANSFER_TYPE transferinfo;
UWORD reserved2[5];
UWORD operationintLevel;
UWORD operationStatusld;
UWORD reserved3;

} PLC540V_HINT_CMD_TYPE;

#pragma pack()

void plc540v_init_handle_interrupts(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_INTERRUPT_LEVEL_TYPE cmdIntLevel,
UBYTE cmdStatusld,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status);

void plc540v_halt_handle_interrupts(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_INTERRUPT_LEVEL_TYPE cmdintlevel,
UBYTE cmdStatuslid,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status);

#endif

P40VHINT.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vhint.h”

/ /

/ PRIVATE TYPE DEFINITIONS /
/ /

typedef enum

{
kPLC540V_HANDLE_INTERRUPTS=0x0003,
} PLC540V_HINTS_COMMAND;

typedef enum
kPLC540V_HINTS_DISABLE=0x0,

kPLC540V_HINTS_ENABLE=0x1,
} PLC540V_HINTS_MODE;

B-33

Appendix B

Sample API Modules

/ /

/ PRIVATE FUNCTIONS /
/ /

static void plc540v_handle_interrupts(

PLC540V_HINTS_COMMAND hintCmd,
PLC540V_HINTS_MODE hintMode,

ULONG vmeCmdBIkAddr,

UWORD baseAddress,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatusld,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status);

PURPOSE: This function configures the PLC-5/40V to recognize the
specified VME interrupts.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_INTERRUPT_LEVEL_TYPE cmdintLevel contains the VME bus
interrupt to be generated by the PLC-5/40V AFTER storing

its response in the response word of the command block AFTER
COMMAND completion. If kVME_NO_INT_LEVEL is specified, then
no VME bus interrupts will be generated.

UBYTE cmdStatusld contains a unique value which will be used
by the interrupted host processor to run a specific

interrupt service routine. This variable must be set to

zero if you are NOT using any command interrupts.

VME_INTERRUPT_LEVEL_TYPE operationintLevel contains the VME
bus interrupt to be generated by the PLC-5/40V AFTER each

copy OPERATION. If kVME_NO_INT_LEVEL is specified, then

an error is generated.

UBYTE operationStatusld contains a unique value which will
be used by the interrupted host processor to run a specific
interrupt service routine. This variable must be set to

zero if you are NOT using any operation interrupts.

OUTPUT: PLC540V.STATUS TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = 0x90000;
UWORD baseAddress = OxFCO0;
VME_INTERRUPT_LEVEL_TYPE cmdintLevel = kVME_NO_INT_LEVEL;
UBYTE cmdStatusld =0;
VME_INTERRUPT_LEVEL_TYPE operationintLevel=kVME_INT_LEVEL_3;
UBYTE operationStatusld =234;

EE I I R I I N N N N I I i R T I N I N T N S S N I I I R S T

PLC540V_STATUS_TYPE status;

B-34

Appendix B

Sample API Modules

plc540v_init_handle_interrupts(
vmeCmdBIkAddr,
baseAddress,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
&status);

Copyright Allen-Bradley Company, Inc. 1993

E R S I

void plc540v_init_handle_interrupts(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatusld,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status)

plc540v_handle_interrupts(
kPLC540V_HANDLE_INTERRUPTS,
kPLC540V_HINTS_ENABLE,
vmeCmdBIkAddr,
baseAddress,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
status);

PURPOSE: This function configures the PLC-5/40V to riot recognize the
specified VME interrupts.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_INTERRUPT_LEVEL_TYPE cmdintLevel contains the VME bus
interrupt to be generated. by the PLC-5/40V AFTER storing

its response in the response word of the command block AFTER
COMMAND completion. If kVME_NO_INT_LEVEL is specified, then
no VME bus interrupts will be generated.

UBYTE cmdStatusld contains a unique value which will be used
by the interrupted host processor to run a specific

interrupt service routine. This variable must be set to

zero if you are NOT using any command interrupts.

VME_INTERRUPT_LEVEL_TYPE operationintLevel contains the VME
bus interrupt to be generated by the PLC-5/40V AFTER each

copy OPERATION. If kVME_NO_INT_LEVEL is specified, then

ALL VME interrupts will be disabled.

EE T R S I S I T N R I S

B-35

Appendix B

Sample API Modules

UBYTE operationStatusld contains a unique value which will
be used by the interrupted host processor to run a specific
interrupt service routine. This variable must be set to

zero if you are NOT using any operation interrupts.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = 0x90000;
UWORD baseAddress = OxFCO0;
VME_INTERRUPT_LEVEL_TYPE cmdintLevel = kVME_NO_INT_LEVEL;
UBYTE cmdStatusld =0;
VME_INTERRUPT_LEVEL_TYPE operationintLevel=kVME_INT_LEVEL_3;
UBYTE operationStatusld =234;

PLC540V_STATUS_TYPE status;

plc540v_halt_handle_interrupts(
vmeCmdBIkAddr,
baseAddress,
cmdIntLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
&status);

Copyright Allen-Bradley Company, Inc. 1993

L I S R N I N R S R R . I N N

void plc540v_halt_handle_interrupts(
ULONG vmeCmdBIlkAddr,
UWORD baseAddress,
VME_INTERRUPT_LEVEL. TYPE cmdintLevel,
UBYTE cmdStatusld,
VME_INTERRUPT LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status)

{
plc540v_handle_interrupts(

kPLC540V_HANDLE_INTERRUPTS,
kPLC540V_HINTS_DISABLE,
vmeCmdBIkAddr,
baseAddress,
cmdintLevel,
cmdStatusld,
operationintLevel,
operationStatusld,
status);

}

/

* PURPOSE: This function configures the PLC-5/40V to recognize the

* specified VME interrupts.

*

* INPUT: ULONG vmeCmdBIkAddr contains the VME address where the

* command block will be copied to so the PLC-5/40V can

* access its information.

* UWORD baseAddress contains the base address of the

PLC-5/40V.

B-36

Appendix B

Sample API Modules

VME_INTERRUPT_LEVEL_TYPE cmdintLevel contains the VME bus
interrupt to be generated by the PLC-5/40V AFTER storing

its response in the response word of the command block AFTER
COMMAND completion. If kVME_NO_INT_LEVEL is specified, then
no VME bus interrupts will be generated.

UBYTE cmdStatusld contains a unique value which will be used
by the interrupted host processor to run a specific

interrupt service routine. This variable must be set to

zero if you are NOT using any command interrupts.

VME_INTERRUPT_LEVEL_TYPE operationintLevel contains the VME
bus interrupt to be generated by the PLC-5/40V AFTER each

copy OPERATION. If kVME_NO_INT_LEVEL is specified, then

ALL VME interrupts will be disabled.

UBYTE operationStatusld contains a unique value which will
be used by the interrupted host processor to run a specific
interrupt service routine. This variable must be set to

zero if you are NOT using any operation interrupts.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
PLC540V_HINTS_COMMAND hintCmd=kPLC540V_HANDLE_INTERRUPTS;
PLC540V_HINTS_MODE hintMode=kPLC540V_HINTS_ENABLE;
ULONG vmeCmdBIkAddr = 0x90000;
UWORD baseAddress = OxFCO0;
VME_INTERRUPT_LEVEL_TYPE cmdintLevel =kVME_NO _INT_LEVEL;
UBYTE cmdStatusld =0;
VME_INTERRUPT_LEVEL_TYPE operationintLevel=k\VME_INT_LEVEL_3;
UBYTE operationStatuslid =432;
PLC540V_STATUS_TYPE status;
plc540v_handle_interrupts(hintCmd,
hintMode,

vmeCmdBIkAddr,

baseAddress,

cmdIntLevel,

cmdStatusld,

operationintLevel,

operationStatusld,

&status);

ECE I S S I I N N T S S I N N R N S I I I I I I

Copyright Allen-Bradley Company, Inc. 1993

/

static void plc540v_handle_interrupts(
PLC540V_HINTS_COMMAND hintCmd,
PLC540V_HINTS_MODE hintMode,
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatusld,
VME_INTERRUPT_LEVEL_TYPE operationintLevel,
UBYTE operationStatusld,
PLC540V_STATUS_TYPE *status)

/* The handle interrupts command block. */
static PLC540V_HINT_CMD_TYPE hintCmdBIKk;

[* Let’s initialize the handle interrupts command block to be empty. */
memset((char *) &hintCmdBIk, 0x0, sizeof(PLC540V_HINT_CMD_TYPE));

B-37

Appendix B

Sample API Modules

/* Let’s initialize the status variable to success. */
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

/* Build the command block. */
hintCmdBIk.commandWord = hintCmd;
hintCmdBIk.responseWord = 0;
hintCmdBIk.cmdintLevel = cmdintLevel;
hintCmdBIk.cmdStatusld = cmdStatusld;
hintCmdBIk.transferinfo.enable = hintMode;
hintCmdBIk.operationintLevel = operationintLevel;
hintCmdBlk.operationStatusld = operationStatusl|d;

/* Copy the command block to VME memory. */

status->epcStatus = EpcToVmeAm((BM_MBO|A24SD),
BM_W16,
(char far *) &hintCmdBIK,
vmeCmdBIkAddr,

sizeof(PLC540V_HINT_CMD_TYPE));
if (status->epcStatus == EPC_SUCCESS)

/* Send the command block address to the PLC-5/40V’s command
register.
*/
plc540v_send_cmd(baseAddress, vmeCmdBIkAddr,
kVME_A24_ADDR_SPACE,
status);
if (status->plc540vStatus == kPLC540V_SUCCESS)

/* If sending the command block address didn't fail, then the
PLC-5/40V has started processing the command.

If the user of this function hasn’t set up any VME interrupts
to be generated, then we will poll the PLC-5/40V unitil the
its done processing the command. This is indicated by a
non-zero value in the response word of the command block.

If the user has set up VME interrupts, then we will simply
return to the caller.
*
if ((cmdintLevel == KVME_NO" INT_LEVEL) &&
(operationintLevel == kVME_NO_INT_LEVEL))

{
I* Let’s poll the PLC-5/40V until its done. */
poll_plc540v_until_response(vmeCmdBIkAddr,
kVME_A24_ADDR_SPACE,
status);
}
}
}
else
{
/* Signal that we have an EPC error. */
status->plc540vStatus = kPLC540V_COPY_CMDBLK_TO_VME_FAILED;
status->statusCategory = KEPC_STATUS;
}

B-38

Appendix B

Sample API Modules

P40VSPCC.H

#ifndef P4OVSPCC_H
#define PAOVSPCC_H 1

[T LT T
1 Definitions for the SEND PCCC COMMAND STRUCTURE 1
[T T T

#include "pccc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/

1/
#define kPLC540V_PCCC_MAX_CMD_DATA 243
typedef UBYTE PLC540V_PCCC_DATA_TYPE[KPLC540V_PCCC_MAX_CMD_DATA];

/* A generic pointer to a PCCC command packet. */
typedef void far *PLC540V_PCCC_PACKET_TYPE;

/* A generic pointer to a PCCC reply packet. */
typedef void far *PLC540V_PCCC_REPLY_TYPE;

typedef struct

UWORD addressModifier:8;
UWORD width:1;
UWORD reservedl:7;
} PLC540V_SPCCC_TRANSFER_TYPE;

typedef struct

{
UWORD commandWord;
UWORD responseWord;
UWORD cmdintLevel;
UWORD cmdStatusld;
UWORD reservedl[3];
PLC540V_SPCCC_TRANSFER_TYPE transferinfo;
UWORD packetAddressHigh;
UWORD packetAddressLow;
UWORD packetSize;
UWORD reserved2[5];

} PLC540V_SPCCC_CMD_TYPE;

#pragma pack()

void plc540v_send_pccc..command(
ULONG vmeCmdBIkAddr,
PLC540V_PCCC_PACKET_TYPE pcccCommandPacket,
UWORD pcccCommandPacketSize,
PLC540V_PCCC_REPLY_TYPE pcccReplyPacket,
UWORD pcccReplyPacketSize,
UWORD baseAddress,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatuslid,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_STATUS_TYPE *status);

#endif

B-39

Appendix B

Sample API Modules

P40VSPCC.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vspcc.h”

/ PRIVATE DEFINITIONS /

/ /

/ PRIVATE TYPE DEFINITIONS /
/ /

typedef enum

{
kPLC540V_SEND_PCCC=0xFFFF,
} PLC540V_SPCCC_COMMAND;

/ PRIVATE FUNCTIONS /

PURPOSE: This function sends a PCCC command to the PLC-5/40V. for
processing.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

PLC540V_PCCC_PACKET_TYPE pcccCommandPacket contains a pointer
to the PCCC command packet which will be sent to the processor.

UWORD pcccCommandPacketSize contains the size of the PCCC
command packet in bytes.

PLC540V_PCCC_REPLY_TYPE pcccReplyPacket contains a pointer to
the PCCC reply packetawhich will be returned from the
processor.

UWORD pcccReplyPacketSize contains the size of the PCCC reply
packet in bytes.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_INTERRUPT_LEVEL_TYPE cmdintLevel contains the VME bus
interrupt to be generated by the PLC-5/40V AFTER storing

its response in the response word of the command block AFTER
COMMAND completion. If kVME_NO_INT_LEVEL is specified, then
no VME bus interrupts will be generated.

UBYTE cmdStatusld contains a unique value which will be used
by the interrupted host processor to run a specific

interrupt service routine. This variable must be set to

zero if you are NOT using any command interrupts.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or D0O8.

EE I S I N N I N I R T S I N I R N N

B-40

Appendix B

Sample API Modules

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. It can be A16 or A24.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = 0x90000;
PLC540V_PCCC_PACKET_TYPE commandPacket= &pcccPacket;
UWORD commandPacketSize = 0x200;
PLC540V_PCCC_REPLY_TYPE replyPacket = &pcccReply;
UWORD replyPacketSize = 0x100;
UWORD baseAddress = 0xFCOO0;
VME_INTERRUPT_LEVEL_TYPE cmdintLevel = kVME_NO_INT_LEVEL;
VME_DATA_WIDTH_TYPE width = kVME_D16_DATA_WIDTH;
VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A24_ADDR_SPACE;
UBYTE cmdStatusld =0;

PLC540V_STATUS_TYPE status;

plc540v_send_pccc_command(
vmeCmdBIkAddr,
commandPacket,
packetSize,
replyPacket,
replyPacketSize,
baseAddress,
cmdintLevel,
cmdStatusld,
width,
addrMod,
&status);

ECE I N S R R T I S R N N N I R

Copyright Allen-Bradley Company, Inc. 1993

void plc540v_send_pccc_command(
ULONG vmeCmdBIkAddr,
PLC540V_PCCC_PACKET_TYPE pcccCommandPacket,
UWORD pcccCommandPacketSize,
PLC540V_PCCC_REPLY_TYPE pcccReplyPacket,
UWORD pcccReplyPacketSize,
UWORD baseAddress,
VME_INTERRUPT_LEVEL_TYPE cmdintLevel,
UBYTE cmdStatuslid,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_STATUS_TYPE *status)

/* The VME location.of the PCCC packet. It will be placed directly
after the PCCC command block in memory.
*/
ULONG vmeCommandPacketAddr = (vmeCmdBIkAddr +
sizeof(PLC540V_SPCCC_CMD_TYPE));

/* The VME location of the reply packet. It must always be appended
after the PCCC command packet.
*/
ULONG vmeReplyPacketAddr = vmeCommandPacketAddr + pcccCommandPacketSize;

/* The continuous send PCCC command block. */
static PLC540V_SPCCC_CMD_TYPE pcccCmdBIk;

B-41

Appendix B

Sample API Modules

[* Let’s initialize the send PCCC command block to be empty. */
memset((char *) &pcccCmdBIk, 0x0, sizeof(PLC540V_SPCCC_CMD_TYPE));

/* Let's initialize the send PCCC reply packet to be empty. */
memset((char *) pcccReplyPacket, 0x0, pcccReplyPacketSize);

/* Let’s initialize the status variable to success. */
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

/* Copy the PCCC command packet to VME memory. */
status->epcStatus = EpcToVmeAm((BM_MBO|A24SD),
BM_WS8,
(char far *) pcccCommandPacket,
vmeCommandPacketAddr,
pcccCommandPacketSize);
if (status->epcStatus == EPC_SUCCESS)
{

/* Build the command block. */

pcccCmdBlk.commandWord = kPLC540V_SEND_PCCC;
pcccCmdBlk.responseWord = 0;

pcccCmdBlk.cmdintLevel = cmdintLevel;

pcccCmdBlk.cmdStatusld = cmdStatusld;
pcccCmdBlk.transferinfo.addressModifier = addrMod;
pcccCmdBlk.transferinfo.width = width;

pcccCmdBIlk.packetAddressHigh = HIWORD(vmeCommandPacketAddr);
pcccCmdBIk.packetAddressLow = LOWORD(vmeCommandPacketAddr);
pcccCmdBlk.packetSize = pcccCommandPacketSize;

/* Copy the command block to VME memory. */
status->epcStatus = EpcToVmeAm((BM_MBO|A24SD),
BM_W1s,
(char far *) &pcccCmdBIK,
vmeCmdBIkAddr,
sizeof(PLC540V_SPCCC_CMD_TYPE));
if (status->epcStatus == EPC_SUCCESS)

/* Send the command block address to the .PLC-5/40V’s command
register.
*/
plc540v_send_cmd(baseAddress, vmeCmdBIkAddr, kVME_A24 ADDR_SPACE,
status);
if (status->plc540vStatus == kPLC540V_SUCCESS)

* If sending the command block address didn't fail, then the
PLC-5/40V has started processing the command.

If the user of this function hasn’t set up any VME interrupts
to be.generated, then we will poll the PLC-5/40V until the
its‘done processing the command. This is indicated by a
non-zero value in the response word of the command block.

If the user has set up VME interrupts, then we will simply
continue by retrieving the PCCC reply packet.

*

if (cmdintLevel == kVME_NO_INT_LEVEL)

/* Let's poll the PLC-5/40V until its done. */
poll_plc540v_until_response(vmeCmdBIkAddr,
kVME_A24_ADDR_SPACE,
status);

B-42

Appendix B

Sample API Modules

/* Let's retrieve the reply packet. */
status->epcStatus=EpcFromVmeAm((BM_MBO|A24SD),
BM_WS8,
vmeReplyPacketAddr,
(char far *) pcccReplyPacket,
pcccReplyPacketSize);
if (status->epcStatus != EPC_SUCCESS)

/* Signal that we have an EPC error. */
status->plc540vStatus =

kPLC540V_GET_REPLYBLK_FROM_VME_FAILED;
status->statusCategory = KEPC_STATUS;

}
}
}
else
{
/* Signal that we have an EPC error. */
status->plc540vStatus = kPLC540V_COPY_CMDBLK_TO_VME_FAILED;
status->statusCategory = KEPC_STATUS;
}
}
else
{
[* Signal that we have an EPC error copying the PCCC packet to VME.*/
status->plc540vStatus = kPLC540V_COPY_PCCC_PACKET_TO_VME_FAILED;
status->statusCategory = KEPC_STATUS;
}
}
P40VWBP.H

#ifndef PAOVWBP_H
#define PAOVWBP_H 1

T T T
/I Definitions for the PCCC WRITE BYTES PHYSICAL COMMAND AND REPLY PACKETS //
T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*ikkicikskokiiokieick |
/ /

/I The maximum number of bytes which can be written in one operation.
#define kPLC540V_PCCC_MAX_WBP_DATA 238
typedef UBYTE PLC540V_PCCC_WBP_DATA_TYPE[KPLC540V_PCCC_MAX_WBP_DATA];

/* The PCCC Write Bytes Physical command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd;
UBYTE sts;
UWORD tns;
UBYTE fnc;
ULONG addr;
PLC540V_PCCC_WBP_DATA _TYPE data;
} PLC540V_PCCC_WBP_CMD_TYPE;
#define kPLC540V_PCCC_WBP_CMD_SIZE (sizeof(PLC540V_PCCC_WBP_CMD_TYPE))

B-43

Appendix B

Sample API Modules

/* The PCCC Write Bytes Physical reply packet structure. */
typedef struct

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

UBYTE extsts;
} PLC540V_PCCC_WBP_RPY_TYPE;
#define kPLC540V_PCCC_WBP_RPY_SIZE (sizeof(PLC540V_PCCC_WBP_RPY_TYPE))
#pragma pack()

void plc540v_pccc_write_bytes_physical(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
ULONG plcAddress,
PLC540V_PCCC_WBP_DATA_TYPE data,
UBYTE datalLength,
PLC540V_PCCC_WBP_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);

#endif

P40VWBP.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vwbp.h”

/ /

/ PRIVATE DEFINITIONS /
/ /
#define kPLC540V_PCCC_WBP._CMD 0x0F

#define kPLC540V_PCCC_WBP.FNC 0x13

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

-

PURPOSE: This function sends the PCCC Write Bytes Physical command to
the PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

L I S I

B-44

Appendix B

Sample API Modules

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or D08.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. It can be A16 or A24.

ULONG plcAddress contains the physical address to write to
in the processor.

PLC540V_PCCC_WBP_DATA_TYPE data contains the data to write
to the processor.

UBYTE dataLength contains the number of bytes to write.

PLC540V_PCCC_WBP_RPY_TYPE reply contains PCCC'’s Write Bytes
Physical command specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = OxEOF100;
UWORD baseAddress = 0XFCO0O0;
VME_DATA_WIDTH_TYPE width =kVME_D16_DATA WIDTH;
VME_ADDRESS_MODIFIER_TYPE addrMod =kVME_A24 ADDR. SPACE;

ULONG plcAddress;
PLC540V_PCCC_WBP_DATA _TYPE data;
UBYTE datalLength;
PLC540V_PCCC_WBP_RPY_TYPE reply;
PLC540V_STATUS_TYPE status;
void plc540v_pccc_write_bytes_physical(
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
plcAddress,
data,
datalLength;
&reply,
&status);

Copyright Allen—Bradley Company, Inc. 1993

EE S N N I G N R . S N N N N N N S T R N

void plc540v_pccc.write_bytes_physical(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
ULONG plcAddress,
PLC540V_PCCC_WBP_DATA_TYPE data,
UBYTE datalLength,
PLC540V_PCCC_WBP_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Write Bytes Physical command packet. */
PLC540V_PCCC_WBP_CMD_TYPE cmdPacket;

/* Let's initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, kPLC540V_PCCC_WBP_CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_WBP_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

B-45

Appendix B

Sample API Modules

[* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.
*
cmdPacket.cmd = kPLC540V_PCCC_WBP_CMD;
cmdPacket.fnc = kPLC540V_PCCC_WBP_FNC;
cmdPacket.addr = plcAddress;
memmove((char *) cmdPacket.data, (char *) data, dataLength);

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_WBP_CMD_SIZE,
reply,
kPLC540V_PCCC_WBP_RPY_SIZE,
baseAddress,
kKVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

P40VAPC.H

#ifndef P4AOVAPC_H
#define PAOVAPC_H 1

e
/I Definitions for the PCCC APPLY PORT CONFIG COMMAND AND-REPLY PACKETS //
I T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS ##isiiikiiios |
/ /

/* The PCCC Apply Port Configuration command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd;
UBYTE sts;
UWORD tns;
UBYTE fnc;
PLC540V_PCCC_DATA_TYPE data;
} PLC540V_PCCC_APC_CMD_TYPE;
#define kPLC540V_PCCC_APC_CMD_SIZE (sizeof(PLC540V_PCCC_APC_CMD_TYPE))

B-46

Appendix B

Sample API Modules

/* The PCCC Apply Port Configuration reply packet structure. */
typedef struct

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

PLC540V_PCCC_DATA_TYPE data;
} PLC540V_PCCC_APC_RPY_TYPE;
#define kPLC540V_PCCC_APC_RPY_SIZE (sizeof(PLC540V_PCCC_APC_RPY_TYPE))
#pragma pack()

void plc540v_pccc_apply_port_config(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_APC_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);

#endif

P40VAPC.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vapc.h”

/ /
/ PRIVATE DEFINITIONS /

!
#define kPLC540V_PCCC_APC_CMD OxOF
#define kPLC540V_PCCC_APC_FNC Ox8F

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

~

PURPOSE: This function sends the PCCC Apply Port Configuration command
to the PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

EE S

B-47

Appendix B

Sample API Modules

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. It can be A16 or A24.

PLC540V_PCCC_APC_RPY_TYPE reply contains PCCC'’s Apply Port
Configuration command specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = OXEOF100;
UWORD baseAddress = 0XFCO00;
VME_DATA_WIDTH_TYPE width = kVME_D16_DATA_WIDTH,;
VME_ADDRESS_MODIFIER_TYPE addrMod =kVME_A24_ADDR_SPACE;

PLC540V_PCCC_APC_RPY_TYPE reply;
PLC540V_STATUS_TYPE status;
void plc540v_pccc_apply_port_config(
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
&reply,
&status);

Copyright Allen-Bradley Company, Inc. 1993

E A S S I I S A S R N S N N N I R

void plc540v_pccc_apply_port_config(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V PCCC_APC_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Apply Port Configuration command packet. */
PLC540V_PCCC_APC_CMD_TYPE cmdPacket;

/* Let's initialize these packets to nothing. */

memset((char®) &emdPacket, 0x0, kPLC540V_PCCC_APC_CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_APC_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Let’s establish the command packet contents... Note that
since we set this block with zeros originally, we don’t
need to explicitly set them here.

*

/

cmdPacket.cmd = kPLC540V_PCCC_APC_CMD;

cmdPacket.fnc = kPLC540V_PCCC_APC_FNC;

B-48

Appendix B

Sample API Modules

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_APC_CMD_SIZE,
reply,
kPLC540V_PCCC_APC_RPY_SIZE,
baseAddress,
KVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

P40VULC.H

#ifndef P4AOVULC_H
#define PAOVULC_H 1

T T
/I Definitions for the PCCC UPLOAD COMPLETE COMMAND AND REPLY PACKETS - /I
T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS ##ikscxiiaiis/
/ /

/* The PCCC Upload Complete command packet structure:*/
typedef struct

UBYTE reserved[4];
UBYTE cmd;
UBYTE sts;
UWORD tns;
UBYTE fnc;
} PLC540V_PCCC_ULC_CMD_TYPE;
#define kPLC540V_PCCC_ULC_CMD_SIZE (sizeof(PLC540V_PCCC_ULC_CMD_TYPE))

/* The PCCC Upload Complete reply packet structure. */
typedef struct
{

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

UBYTE extsts;
} PLC540V_PCCC_ULC_RPY_TYPE;
#define kPLC540V_PCCC_ULC_RPY_SIZE (sizeof(PLC540V_PCCC_ULC_RPY_TYPE))
#pragma pack()

void plc540v_pccc_upload_complete(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,

PLC540V_PCCC_ULC_RPY_TYPE *reply,

PLC540V_STATUS_TYPE *status);

#endif

B-49

Appendix B

Sample API Modules

P40VULC.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vulc.h”

/ /
/ PRIVATE DEFINITIONS /

!/
#define kPLC540V_PCCC_ULC_CMD 0x0F
#define KPLC540V_PCCC_ULC_FNC 0x55

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

~

PURPOSE: This function sends the PCCC Upload Complete command. to the
PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V-can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER TYPE-@addrMod defines the address space
in which the VME datavis accessed. It can be A16 or A24.

PLC540V_PCCC_ULC_RPY_TYPE reply contains PCCC's Upload Complete
command specificreply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = OxEOF100;
UWORD baseAddress = 0XFCO00;
VME_DATA WIDTH_TYPE width = kVME_D16_DATA WIDTH;
VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A24_ADDR_SPACE;

PLC540V_PCCC_ULC_RPY_TYPE reply;
PLC540V_STATUS_TYPE status;

ECE I I S S S N T N R I S T N S I N N N S I

B-50

Appendix B

Sample API Modules

void plc540v_pccc_upload_complete(
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
&reply,
&status);

E o R T .

Copyright Allen-Bradley Company, Inc. 1993

void plc540v_pccc_upload_complete(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_ULC_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Upload Complete command packet. */
PLC540V_PCCC_ULC_CMD_TYPE cmdPacket;

[* Let's initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, kPLC540V_PCCC_ULC_CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_ULC_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.

*

cmdPacket.cmd = kPLC540V_PCCC_ULC_CMD;

cmdPacket.fnc = kPLC540V_PCCC_ULC_FNC;

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_ULC_CMD_SIZE,
reply,
kPLC540V_PCCC_ULC_RPY_SIZE,
baseAddress,
KVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-51

Appendix B

Sample API Modules

P40VDLAH

#ifndef P4AOVDLA_H
#define PAOVDLA_H 1

[T LT T
/I Definitions for the PCCC DOWNLOAD ALL COMMAND AND REPLY PACKETS 1
[T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/ /

/* The PCCC Download All command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd,
UBYTE sts;
UWORD tns;
UBYTE fnc;
} PLC540V_PCCC_DLA_CMD_TYPE;
#define kPLC540V_PCCC_DLA_CMD_SIZE (sizeof(PLC540V_PCCC_DLA_CMD. TYPE))

/* The PCCC Download All reply packet structure. */
typedef struct
{

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd,;

UBYTE sts;

UWORD tns;

UBYTE extsts;
} PLC540V_PCCC_DLA_RPY_TYPE;
#define kPLC540V_PCCC_DLA_RPY_SIZE (sizeof(PLC540V_PCCC_DLA_RPY_TYPE))
#pragma pack()

void plc540v_pccc_download_all(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_DLA_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);

#endif

B-52

Appendix B

Sample API Modules

P40VDLA.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vdla.h”

/ /
/ PRIVATE DEFINITIONS /

!/
#define kPLC540V_PCCC_DLA_CMD 0x0F
#define kKPLC540V_PCCC_DLA_FNC 0x50

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

PURPOSE: This function sends the PCCC Download All command to the
PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V-can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER TYPE-@addrMod defines the address space
in which the VME datavis accessed. It can be A16 or A24.

PLC540V_PCCC_DLA_RPY_TYPE reply contains PCCC’s Download All
command specificreply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EE R R T R N T I S I S R

B-53

Appendix B

Sample API Modules

* EXAMPLE:

* ULONG vmeCmdBIkAddr = OxEOF100;

* UWORD baseAddress = 0XFCO00;

* VME_DATA_ WIDTH_TYPE width = kVME_D16_DATA WIDTH;
* VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A24_ADDR_SPACE;
* PLC540V_PCCC_DLA_RPY_TYPE reply;

* PLC540V_STATUS_TYPE status;

* void plc540v_pccc_download_all(

* vmeCmdBIkAddr,

* baseAddress,

* width,

* addrMod,

* &reply,

* &status);

*
*
*

Copyright Allen-Bradley Company, Inc. 1993

void plc540v_pccc_download_all(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_DLA_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Download All command packet. */
PLC540V_PCCC_DLA_CMD_TYPE cmdPacket;

/* Let's initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, kPLC540V_PCCC_DLA_CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_DLA_RPY_SIZE),
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don’t
need to explicitly set them here.

*

cmdPacket.cmd = kPLC540V_PCCC_DLA_CMD;

cmdPacket.fnc = kPLC540V_PCCC._DLA_FNC;

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_DLA _CMD_SIZE,
reply,
kPLC540V_PCCC_DLA_RPY_SIZE,
baseAddress,
kVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-54

Appendix B

Sample API Modules

P40VDLC.H

#ifndef P4AOVDLC_H
#define PAOVDLC_H 1

[T LT T
/I Definitions for the PCCC DOWNLOAD COMPLETE COMMAND AND REPLY PACKETS //
[T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/ /

/* The PCCC Download Complete command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd,
UBYTE sts;
UWORD tns;
UBYTE fnc;
} PLC540V_PCCC_DLC_CMD_TYPE;
#define kPLC540V_PCCC_DLC_CMD_SIZE (sizeof(PLC540V_PCCC_DLC_CMD. TYPE))

/* The PCCC Download Complete reply packet structure. */
typedef struct
{

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd,;

UBYTE sts;

UWORD tns;

UBYTE extsts;
} PLC540V_PCCC_DLC_RPY_TYPE;
#define kPLC540V_PCCC_DLC_RPY_SIZE (sizeof(PLC540V_PCCC_DLC_RPY_TYPE))
#pragma pack()

void plc540v_pccc_download_complete(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH. TYPE width,
VME_ADDRESS MODIFIER_TYPE addrMod,
PLC540V_PCCC_DLC_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);
#endif

B-55

Appendix B

Sample API Modules

P40VDLC.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vdic.h”

/ /
/ PRIVATE DEFINITIONS /

!/
#define kPLC540V_PCCC_DLC_CMD 0x0F
#define KPLC540V_PCCC_DLC_FNC 0x52

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

PURPOSE: This function sends the PCCC Download Complete command to the
PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V-can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER TYPE-@addrMod defines the address space
in which the VME datavis accessed. It can be A16 or A24.

PLC540V_PCCC_DLC_RPY_TYPE reply contains PCCC'’s Download Complete
command specificreply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

E I I R T I R N T I N I S R I

RETURNS: Nothing.

B-56

Appendix B

Sample API Modules

* EXAMPLE:

* ULONG vmeCmdBIkAddr = OxEOF100;

* UWORD baseAddress = 0XFCO00;

* VME_DATA_ WIDTH_TYPE width = kVME_D16_DATA WIDTH;
* VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A24_ADDR_SPACE;
* PLC540V_PCCC_DLC_RPY_TYPE reply;

* PLC540V_STATUS_TYPE status;

* void plc540v_pccc_download_complete(

* vmeCmdBIkAddr,

* baseAddress,

* width,

* addrMod,

* &reply,

* &status);

*
*
*

Copyright Allen-Bradley Company, Inc. 1993

void plc540v_pccc_download_complete(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_DLC_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Download Complete command packet. */
PLC540V_PCCC_DLC_CMD_TYPE cmdPacket;

[* Let’s initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, kPLC540V_PCCC_DLC_CMD. SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_DLC_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.

*/

cmdPacket.cmd = kPLC540V_PCCC_DLC_CMD;

cmdPacket.fnc = kPLC540V_PCCC_DLC. FNC;

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_DLC_CMD_SIZE,
reply,
kPLC540V_PCCC_DLC_RPY_SIZE,
baseAddress,
kVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-57

Appendix B

Sample API Modules

P40VECHO.H

#ifndef PAOVECHO_H
#define PAOVECHO_H 1

[T LT T
1 Definitions for the PCCC ECHO COMMAND AND REPLY PACKETS "
[T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/ /

/* The PCCC Echo command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd,
UBYTE sts;
UWORD tns;
UBYTE fnc;
PLC540V_PCCC_DATA_TYPE data;
} PLC540V_PCCC_ECHO_CMD_TYPE;
#define kPLC540V_PCCC_ECHO_CMD_SIZE (sizeof(PLC540V_PCCC_ECHO CMD_TYPE))

/* The PCCC Echo reply packet structure. */
typedef struct

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

PLC540V_PCCC_DATA_TYPE data;
} PLC540V_PCCC_ECHO_RPY_TYPE;
#define kPLC540V_PCCC_ECHO_RPY_SIZE (sizeof(PLC540V_PCCC_ECHO_RPY_TYPE))
#pragma pack()

void plc540v_pccc_echo(
ULONG vmeCmdBIkAddr,

UWORD baseAddress,
VME_DATA WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_DATA _TYPE data,
UBYTE datalLength,
PLC540V_PCCC_ECHO_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);

#endif

B-58

Appendix B

Sample API Modules

P40VECHO.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vecho.h”

/ /
/ PRIVATE DEFINITIONS /

!/
#define kPLC540V_PCCC_ECHO_CMD 0x6
#define kKPLC540V_PCCC_ECHO_FNC 0x0

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

~

PURPOSE: This function sends the PCCC Echo command to the PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. it can be A16 or A24.

PLC540V_PCCC_DATA TYPE data Contains the data which should
be sent to the processor and echoed back.

UBYTE datalength contains the length of the data being sent
in bytes.

PLC540V.PCCC_ECHO_RPY_TYPE reply contains PCCC’s ECHO command
specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = OxEOF100;
UWORD baseAddress = 0XFCO00;
VME_DATA_WIDTH_TYPE width = kVME_D16_DATA_WIDTH,;
VME_ADDRESS_MODIFIER_TYPE addrMod =kVME_A24_ADDR_SPACE;
PLC540V_PCCC_DATA_TYPE data ="Hello There”;
UBYTE datalLength =11;

E A I R I N I S R S N N I N N S T N T I

PLC540V_PCCC_ECHO_RPY_TYPE reply;

B-59

Appendix B

Sample API Modules

PLC540V_STATUS_TYPE status;
void plc540v_pccc_echo(
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
data,
dataLength,
&reply,
&status);

Copyright Allen-Bradley Company, Inc. 1993

EE S I N

void plc540v_pccc_echo(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_DATA_TYPE data,
UBYTE datalLength,
PLC540V_PCCC_ECHO_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The ECHO command packet. */
PLC540V_PCCC_ECHO_CMD_TYPE cmdPacket;

[* Let’s initialize these packet to nothing. */

memset((char *) &cmdPacket, 0x0, kPLC540V_PCCC_ECHO_CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_ECHO_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

/* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.
*/
cmdPacket.cmd = kPLC540V_PCCC_ECHO_CMD;
cmdPacket.fnc = kPLC540V_PCCC_ECHO_FNC,;
memmove((char *) cmdPacket.data, (char *) data, dataLength);

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&emdPacket,
kPLC540V_PCCC_ECHO_CMD_SIZE,
reply,
kPLC540V_PCCC_ECHO_RPY_SIZE,
baseAddress,
kKVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-60

Appendix B

Sample API Modules

P40VGER.H

#ifndef PAOVGER_H
#define PAOVGER_H 1

[T LT T
/I Definitions for the PCCC GET EDIT RESOURCE COMMAND AND REPLY PACKETS //
[T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/ /

/* The PCCC Get Edit Resource command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd,
UBYTE sts;
UWORD tns;
UBYTE fnc;
} PLC540V_PCCC_GER_CMD_TYPE;
#define kPLC540V_PCCC_GER_CMD_SIZE (sizeof(PLC540V_PCCC_GER . .CMD_TYPE))

/* The PCCC Get Edit Resource reply packet structure. */
typedef struct
{

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd,;

UBYTE sts;

UWORD tns;

UBYTE extsts;
} PLC540V_PCCC_GER_RPY_TYPE;
#define kPLC540V_PCCC_GER_RPY_SIZE (sizeof(PLC540V_PCCC_GER_RPY_TYPE))
#pragma pack()

void plc540v_pccc_get_edit_resource(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH. TYPE width,
VME_ADDRESS MODIFIER_TYPE addrMod,
PLC540V_PCCC_GER_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);
#endif

B-61

Appendix B

Sample API Modules

P40VGER.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vger.h”

/ /
/ PRIVATE DEFINITIONS /

!/
#define kPLC540V_PCCC_GER_CMD 0x0F
#define KPLC540V_PCCC_GER_FNC 0x11

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

~

PURPOSE: This function sends the PCCC Get Edit Resource command to the
PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V-can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER TYPE-@addrMod defines the address space
in which the VME datavis accessed. It can be A16 or A24.

PLC540V_PCCC_GER_RPY_TYPE reply contains PCCC's Get Edit
Resource command specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EE R R T R N N I I N S I S R T

B-62

Appendix B

Sample API Modules

* EXAMPLE:

* ULONG vmeCmdBIkAddr = OxEOF100;

* UWORD baseAddress = 0XFCO00;

* VME_DATA_ WIDTH_TYPE width = kVME_D16_DATA WIDTH;
* VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A24_ADDR_SPACE;
* PLC540V_PCCC_GER_RPY_TYPE reply;

* PLC540V_STATUS_TYPE status;

* void plc540v_pccc_get_edit_resource(

* vmeCmdBIkAddr,

* baseAddress,

* width,

* addrMod,

* &reply,

* &status);

*
*
*

Copyright Allen-Bradley Company, Inc. 1993

void plc540v_pccc_get_edit_resource(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_GER_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Get Edit Resource command packet. */
PLC540V_PCCC_GER_CMD_TYPE cmdPacket;

[* Let’s initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, KPLC540V_PCCC_GER_CMD. SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_GER_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.

*/

cmdPacket.cmd = kPLC540V_PCCC_GER_CMD;

cmdPacket.fnc = kPLC540V_PCCC_GER._FNC;

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_GER_CMD_SIZE,
reply,
kPLC540V_PCCC_GER_RPY_SIZE,
baseAddress,
kVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-63

Appendix B

Sample API Modules

P40VIHAS.H

#ifndef P4AOVIHAS_H
#define PAOVIHAS_H 1

[T LT T
/I Definitions for the PCCC ID HOST AND STATUS COMMAND AND REPLY PACKETS //
[T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/ /

/* The PCCC Identify Host and Status command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd,
UBYTE sts;
UWORD tns;
UBYTE fnc;
} PLC540V_PCCC_IHAS_CMD_TYPE;
#define kPLC540V_PCCC_IHAS_CMD_SIZE (sizeof(PLC540V_PCCC_IHAS CMD_TYPE))

[* The operating status information */
typedef struct

UBYTE keyswitchMode:3; /* Byte 1, Operating Status */
#define kPLC540V_PROGRAM_LOAD 0x0
#define KPLC540V_RUN 0x2
#define kPLC540V_REMOTE_PROGRAM_LOAD O0x4
#define kKPLC540V_REMOTE_TEST 0x5
#define kPLC540V_REMOTE_RUN 0x6

UBYTE majorFault:1;
#define kKPLC540V_NO_MAJOR_FAULT 0x0
#define KPLC540V_MAJOR_FAULT Ox1

UBYTE downloadMode:1;
#define KPLC540V_NOT_DOWNLOADING 0x0
#define kKPLC540V_DOWNLOADING Ox1

UBYTE uploadMode:1;
#define kPLC540V_NOT._UPLOADING 0x0
#define KPLC540V._UPLOADING 0x1

UBYTE testEditMode:1;
#define KPLC540V_NOT_TESTING_EDITS 0x0
#define kKPLC540V_TESTING_EDITS 0x1

UBYTE editsExist:1;

#define kPLC540V_NO_EDITS 0x0
#define kPLC540V_EDITS 0x1

UBYTE interfaceType:4; /* Byte 2, Processor Type */
#define kPLC5_FAMILY 0xB

UBYTE controllerType:4;
#define KEXAMINE_PROCESSOR_EXPANSION OxE

B-64

Appendix B

Sample API Modules

UBYTE expansionType; /* Byte 3, Processor Expansion Type */
#define kPLC540V_PROCESSOR 0x37

ULONG memorySize; [* Byte 4, Processor Memory Size(WRDS)*/

UBYTE revision:5; [* Byte 8, Processor Revision & Series*/
#define kPLC540V_REVISION_A 0x0
#define kPLC540V_REVISION_B Oox1

UBYTE series:3;

#define KPLC540V_SERIES_A 0x0
#define kPLC540V_SERIES_B 0ox1
UBYTE stationNumber:6; [* Byte 9, Processor station number */

UBYTE reservedl:2;

UBYTE adapterAddress; /* Byte 10, Processor Adapter Address */
#define kPLC540V_IS_SCANNER OxFD
UBYTE doubleDensity:1; /* Byte 11, I/0O & Comm Params */

#define kPLC540V_DOUBLE_DENSITY 0x0
#define kKPLC540V_NOT_DOUBLE_DENSITY 0x1

UBYTE adapterMode:1;
#define kPLC540V_NOT_ADAPTER_MODE 0x0
#define kPLC540V_ADAPTER_MODE 0x1

UBYTE moduleGroupForTopHalf:1;
#define kPLC540V_MODULE_GRP_NOT_TOP 0x0
#define kPLC540V_MODULE_GRP_TOP ox1

UBYTE reserved2:2;

UBYTE adapterisHalfRack:1,;
#define KPLC540V_ADAPTER_NOT_HALF_RACK 0x0
#define kPLC540V_ADAPTER_IS_HALF_RACK 0x1

UBYTE pclAt115KBaud:1;
#define KPLC540V_PCL_NOT_115K 0x0
#define KPLC540V_PCL_IS_115K ox1

UBYTE reserved3:1;

UWORD dataTableFileCount; /* Byte 12, Data Table File Count; This
value is the highest assigned file
number plus one.
*I
UWORD programFileCount; /* Byte 14, Program File Count; This
value is the highest assigned file
number plus one.
*

UBYTE forcingActive:1; /* Byte 16, Forcing Status */
#define KPLC540V_FORCING_NOT_ACTIVE 0x0
#define kPLC540V_FORCING_IS_ACTIVE Ox1

UBYTE reserved4:3;

UBYTE forcesPresent:1;
#define KPLC540V_FORCES_NOT_PRESENT 0x0
#define kKPLC540V_FORCES_ARE_PRESENT 0x1

B-65

Appendix B

Sample API Modules

UBYTE reserved5:2;

UBYTE forcesSFC2Enabled:1;
#define kPLC540V_SFC2_FORCES_DISABLED 0x0
#define KPLC540V_SFC2_FORCES_ENABLED 0x1

UBYTE memoryProtected,; /* Byte 17, Memory Protected; If this
is zero, then it is not protected.
*
#define kPLC540V_MEMORY_NOT_PROTECTED 0x0

UBYTE raminvalid; /* Byte 18, Bad RAM,; If this is zero
then RAM is valid.
*/
#define kPLC540V_RAM_IS_VALID 0x0
UBYTE debugMode; /* Byte 19, Debug Mode; If this is

zero, then debug mode if off.
*/
#define kPLC540V_DEBUG_MODE_OFF 0x0

UWORD holdPointFile; /* Byte 20, Hold Point File; This
will contain the hold point file
if debug mode is on (non-zero).
*

UWORD holdPointElement; [* Byte 22, Hold Point Element; This
will contain the hold point
element if debug mode is on (non-zero).
*
/

UWORD editTimeStampSec; /* Byte 24, Edit Time Stamp Second */
UWORD editTimeStampMin; /* Byte 26, Edit Time Stamp Minute */
UWORD editTimeStampHour; /* Byte 28, Edit Time Stamp Hour */
UWORD editTimeStampDay; [* Byte 30, Edit-Time Stamp Day */
UWORD editTimeStampMonth; /* Byte 32, Edit Time Stamp Month */
UWORD editTimeStampYear; /* Byte 34, Edit Time Stamp Year */
UBYTE portNumber; /% Byte 36, Port number that this

command was received on.
#f
} PLC540V_PCCC_IHAS STATUS TYPE;

/* The PCCC Identify Host and Status reply packet structure. */
typedef struct
{

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

PLC540V_PCCC_IHAS_STATUS_TYPE plcStatus;
} PLC540V_PCCC_IHAS_RPY_TYPE;
#define kPLC540V_PCCC_IHAS_RPY_SIZE (sizeof(PLC540V_PCCC_IHAS_RPY_TYPE))
#pragma pack()

B-66

Appendix B

Sample API Modules

void plc540v_pccc_id_host_and_status(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,

PLC540V_PCCC_IHAS_RPY_TYPE *reply,

PLC540V_STATUS_TYPE *status);

#endif

P40VIHAS.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vihas.h”

/ /
/ PRIVATE DEFINITIONS /

/
#define kPLC540V_PCCC_ID_HOST_STATUS_CMD 0x6
#define kPLC540V_PCCC_ID_HOST_STATUS_FNC 0x3

/ PRIVATE TYPE DEFINITIONS !

/ PRIVATE FUNCTIONS /

-

PURPOSE: This function sends the PCCC Identify Host and Some Status
command to the PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA. WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. It can be A16 or A24.

PLC540V_PCCC_IHAS_RPY_TYPE reply contains PCCC's Identify
Host and Some Status command specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

L I I A I N I . N I S B I I I

B-67

Appendix B

Sample API Modules

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = OXEOF100;
UWORD baseAddress = 0XFCO00;
VME_DATA_WIDTH_TYPE width = kVME_D16_DATA_WIDTH,;
VME_ADDRESS_MODIFIER_TYPE addrMod =kVME_A24_ADDR_SPACE;
PLC540V_PCCC_IHAS_RPY_TYPE reply;
PLC540V_STATUS_TYPE status;
void plc540v_pccc_IHAS(
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
&reply,
&status);

Copyright Allen-Bradley Company, Inc. 1993

EE R I I R N I S I . N I

void plc540v_pccc_id_host_and_status(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_IHAS_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Id Host & Status command packet. */
PLC540V_PCCC_IHAS_CMD_TYPE cmdPacket;

/* Let's initialize these packet to nothing. */

memset((char *) &mdPacket, 0x0, kPLC540V_PCCC_IHAS CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_IHAS_RPY._SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

/* Let’s establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.
*
cmdPacket.cmd = kPLC540V_PCCC._ID_HOST_STATUS_CMD;
cmdPacket.fnc = kPLC540V_PCCC_ID HOST_STATUS_FNC;

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_IHAS_CMD_SIZE,
reply,
kPLC540V_PCCC_IHAS_RPY_SIZE,
baseAddress,
kKVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-68

Appendix B

Sample API Modules

P40VRBP.H

#ifndef PAOVRBP_H
#define PAOVRBP_H 1

[T LT T
/I Definitions for the PCCC READ BYTES PHYSICAL COMMAND AND REPLY PACKETS //
[T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/ /

/* The PCCC Read Bytes Physical command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd,
UBYTE sts;
UWORD tns;
UBYTE fnc;
ULONG addr;
UBYTE size;
} PLC540V_PCCC_RBP_CMD_TYPE;
#define kPLC540V_PCCC_RBP_CMD_SIZE (sizeof(PLC540V_PCCC_RBP.CMD. TYPE))

/I The maximum number of bytes which can be read in one operation. This
/I maximum value is really 244, but | will set it to match the maximum

I/ value for Write Bytes Physical so we can use the same bucket sizes...
#define kPLC540V_PCCC_MAX_RBP_DATA 238

/* The PCCC Read Bytes Physical reply packet structure. */
typedef struct
{

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

UBYTE data[kPLC540V_PCCC_MAX_RBP_DATA];
} PLC540V_PCCC_RBP_RPY_TYPE;
#define kPLC540V_PCCC_ RBP.RPY_SIZE (sizeof(PLC540V_PCCC_RBP_RPY_TYPE))
#pragma pack()

void plc540v_pccc_read. bytes_physical(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,

ULONG plcAddress,

UBYTE readSize,
PLC540V_PCCC_RBP_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);

#endif

B-69

Appendix B

Sample API Modules

P40VRBP.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vrbp.h”

/ /
/ PRIVATE DEFINITIONS /

!/
#define kPLC540V_PCCC_RBP_CMD 0x0F
#define KPLC540V_PCCC_RBP_FNC 0x17

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

~

PURPOSE: This function sends the PCCC Read Bytes Physical command to the
PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER TYPE-@addrMod defines the address space
in which the VME datavis accessed. It can be A16 or A24.

ULONG plcAddress contains the physical address to write to
in the processor.

UBYTE datalength contains the number of bytes to write.

PLC540V.PCCC_RBP_RPY_TYPE reply contains PCCC'’s Read Bytes
Physical command specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

L e I I N N N N N S N I S . N I

B-70

Appendix B

Sample API Modules

* EXAMPLE:

* ULONG vmeCmdBIkAddr = OXEOF100;

* UWORD baseAddress = 0XFCO0O0;

* VME_DATA_WIDTH_TYPE width = kVME_D16_DATA_WIDTH,;
* VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A24 ADDR_SPACE;
* ULONG plcAddress;

* UBYTE datalLength;

* PLC540V_PCCC_RBP_RPY_TYPE reply;

* PLC540V_STATUS_TYPE status;

* void plc540v_pccc_read_bytes_physical(

* vmeCmdBIkAddr,

* baseAddress,

* width,

* addrMod,

* plcAddress,

* datalLength,

* &reply,

* &status);

*
*
*

Copyright Allen—Bradley Company, Inc. 1993

void plc540v_pccc_read_bytes_physical(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
ULONG plcAddress,
UBYTE datalLength,
PLC540V_PCCC_RBP_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Read Bytes Physical command packet. */
PLC540V_PCCC_RBP_CMD_TYPE cmdPacket;

/* Let’s initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, kPLC540V_PCCC_RBP_CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_RBP_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Let's establish the command packet contents... Note that
since we set this block with zeros originally; we don't
need to explicitly set them here.

*/

cmdPacket.cmd = kPLC540V_PCCC_RBP_CMD;

cmdPacket.fnc = kPLC540V_PCCC_RBP_FNC;

cmdPacket.addr = plcAddress;

cmdPacket.size = datal.ength;

plc540v_send_pcecc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_RBP_CMD_SIZE,
reply,
kPLC540V_PCCC_RBP_RPY_SIZE,
baseAddress,
KVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-71

Appendix B

Sample API Modules

P40VRER.H

#ifndef PAOVRER_H
#define PAOVRER_H 1

[T LT T
/I Definitions for the PCCC RETURN EDIT RESOURCE COMMAND AND REPLY PACKETS //
[T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/ /

/* The PCCC Return Edit Resource command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd,
UBYTE sts;
UWORD tns;
UBYTE fnc;
} PLC540V_PCCC_RER_CMD_TYPE;
#define kPLC540V_PCCC_RER_CMD_SIZE (sizeof(PLC540V_PCCC_RER .CMD._TYPE))

/* The PCCC Return Edit Resource reply packet structure. */
typedef struct
{

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd,;

UBYTE sts;

UWORD tns;

UBYTE extsts;
} PLC540V_PCCC_RER_RPY_TYPE;
#define kPLC540V_PCCC_RER_RPY_SIZE (sizeof(PLC540V_PCCC_RER_RPY_TYPE))
#pragma pack()

void plc540v_pccc_return_edit fesource(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_RER_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);

#endif

B-72

Appendix B

Sample API Modules

P40VRER.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vrer.h”

/ /
/ PRIVATE DEFINITIONS /

!/
#define kPLC540V_PCCC_RER_CMD 0x0F
#define KPLC540V_PCCC_RER_FNC 0x12

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

~

PURPOSE: This function sends the PCCC Return Edit Resource command to
the PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V-can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER TYPE-@addrMod defines the address space
in which the VME datavis accessed. It can be A16 or A24.

PLC540V_PCCC_RER_RPY _TYPE reply contains PCCC'’s Return Edit
Resource command specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EE R R T R N T N N S I SR T R T

B-73

Appendix B

Sample API Modules

* EXAMPLE:

* ULONG vmeCmdBIkAddr = OxEOF100;

* UWORD baseAddress = 0XFCO00;

* VME_DATA_ WIDTH_TYPE width = kVME_D16_DATA WIDTH;
* VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A24_ADDR_SPACE;
* PLC540V_PCCC_RER_RPY_TYPE reply;

* PLC540V_STATUS_TYPE status;

* void plc540v_pccc_return_edit_resource(

* vmeCmdBIkAddr,

* baseAddress,

* width,

* addrMod,

* &reply,

* &status);

*
*
*

Copyright Allen-Bradley Company, Inc. 1993

void plc540v_pccc_return_edit_resource(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_RER_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Return Edit Resource command packet. */
PLC540V_PCCC_RER_CMD_TYPE cmdPacket;

[* Let’s initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, KPLC540V_PCCC_RER_CMD. SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_RER_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.

*/

cmdPacket.cmd = kPLC540V_PCCC_RER_CMD;

cmdPacket.fnc = kPLC540V_PCCC_RER. FNC;

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_RER_CMD_SIZE,
reply,
kPLC540V_PCCC_RER_RPY_SIZE,
baseAddress,
kVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-74

Appendix B

Sample API Modules

P40VRMW.H

#ifndef PAOVRMW_H
#define PAOVRMW_H 1

[T LT T
/I Definitions for the PCCC READ-MODIFY-WRITE COMMAND AND REPLY PACKETS //
[T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/ /

/* The structure of a system address with its associated AND and OR masks. */
typedef struct

PCCC_LOGBIN_SYSTEM_ADDRESS_TYPE sysAddr;
UWORD andMask;
UWORD orMask;

} PLC540V_RMW_ADDRMASK_TYPE;

/* An array of the maximum number of system address, AND and OR masks.that
can be operated upon in one operation. The user MUST be certain to
initialize this array properly by calling plc540v_init_addrmasks().
*/
#define kPLC540V_MAX_RMW_ADDRMASKS_BYTES 242
#define kPLC540V_MAX_RMW_ADDRMASKS (kPLC540V_MAX_RMW_ADDRMASKS_BYTES /
sizeof(PLC540V_RMW_ADDRMASK_TYPE))

typedef PLC540V_RMW_ADDRMASK_TYPE
PLC540V_RMW_ADDRMASKS_TYPE[KPLC540Y_MAX_RMW_ADDRMASKS];

/* The PCCC RMW command packet structure. */
typedef struct
{

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

UBYTE fnc;

PLC540V_RMW_ADDRMASKS_TYPE addrMasks;
} PLC540V_PCCC_RMW_CMD_TYPE;
#define kPLC540V_PCCC RMW_CMD_SIZE (sizeof(PLC540V_PCCC_RMW_CMD_TYPE))

/* The PCCC RMW reply packet structure. */
typedef struct

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

UBYTE extSts;
} PLC540V_PCCC_RMW_RPY_TYPE;
#define kPLC540V_PCCC_RMW_RPY_SIZE (sizeof(PLC540V_PCCC_RMW_RPY_TYPE))
#pragma pack()

void plc540v_init_addrmasks(PLC540V_RMW_ADDRMASKS_TYPE addrMasks);

B-75

Appendix B

Sample API Modules

void plc540v_add_addrmasks(UBYTE arrayindex,
UWORD fileNumber,
UWORD elementNumber,
UWORD andMask,
UWORD orMask,
PLC540V_RMW_ADDRMASKS_TYPE addrMasks,
PLC540V_STATUS_TYPE *status);

void plc540v_pccc_rmw(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_ WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_RMW_ADDRMASKS_TYPE addrMasks,
PLC540V_PCCC_RMW_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);

#endif

P40VRMW.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vrmw.h”

/ /

/ PRIVATE DEFINITIONS /
/ /
#define kPLC540V_PCCC_RMW_CMD 0x0F

#define kPLC540V_PCCC_RMW_FNC 0x26

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

* PURPOSE: This function initialized the system address mask data
* structure. Currently, it simply sets the entire structure

* to zero.

*

* INPUT: PLC540V_RMW_ADDRMASKS_TYPE addrMasks

*

* OUTPUT: Nothing.

*

* RETURNS: Nothing.

*

* EXAMPLE:

* PLC540V_RMW_ADDRMASKS_TYPE addrMasks;

* plc540v_init_addr_masks(PLC540V_RMW_ADDRMASKS_TYPE addrMasks);
*

*

Copyright Allen-Bradley Company, Inc. 1993

/
void plc540v_init_addrmasks(PLC540V_RMW_ADDRMASKS_TYPE addrMasks)

memset((char *) &addrMasks[0], 0x0, sizeof(PLC540V_RMW_ADDRMASKS_TYPE));

B-76

Appendix B

Sample API Modules

EE T R T R N I N I I N I S N N . N N N N T S S S S I R I N

PURPOSE: This function adds an system address and its corresponding
AND and OR masks to a data structure which will then be used
by the plc540v_pccc_rmw() function. It it imperative that
this data structure be initialized prior to using this
function by calling plc540v_init_addrmasks().

UWORD arrayOffset contains the index into the array. Since
we are using C arrays, this value is within the range of
0 <= x < kPLC540V_MAX_RMW_ADDRMASKS.

UWORD fileNumber is the data table file number that we will
be accessing for the read-modify-write operation.

UWORD elementNumber is the data table file’s element number
that we will be accessing for the read-modify-write operation.

UWORD andMask contains the AND mask which will be used on the
value read from the data table file's element. A zero in the

AND mask resets the corresponding bit in the addressed word to
zero. A one in the AND mask leaves the corresponding bit
unchanged.

UWORD orMask contains the OR mask which will be used on the
value read from the data table file’s element. A one in the

OR mask sets the corresponding bit in the addressed word to
one. A zero in the OR mask leaves the corresponding bit
unchanged.

PLC540V_RMW_ADDRMASKS_TYPE addrMasks contains system
addresses and their corresponding AND and OR masks.

This structure MUST be initialized by calling
plc540v_init_addrmasks() function before using it

with this function.

OUTPUT: PLC540V_STATUS_TYPE *status will'contain the final status
of requesting this function. This status could-be and EPC
or PLC-5/40V value.

RETURNS: Nothing.
EXAMPLE:

PLC540V_STATUS_TYPE status;
PLC540V_RMW_ADDRMASKS_TYPE addrMasks;

register int addrCount =0;
UWORD fileNumber =7,
UWORD elementNumber =20;
UWORD andMask = 0xFFQO;
UWORD orMask = Ox00AA;

plc540v_init_addrmasks(addrMasks);
for (addrCount=0; addrCount<5; addrCount++,elementNumber++)

B-77

EoRE

Appendix B

Sample API Modules

plc540v_add_addrmasks(addrCount,
fileNumber,
elementNumber,
andMask,
orMask,
addrMasks,
&status);

Copyright Allen-Bradley Company, Inc. 1993

void plc540v_add_addrmasks(UBYTE arraylndex,

UWORD fileNumber,

UWORD elementNumber,

UWORD andMask,

UWORD orMask,
PLC540V_RMW_ADDRMASKS_TYPE addrMasks,
PLC540V_STATUS_TYPE *status)

/* Do validations of file number range, arraylndex range, etc? */

addrMasks[arraylndex].orMask = orMask;
addrMasks[arrayIndex].andMask = andMask;
addrMasks[arraylndex].sysAddr.maskByte = kPCCC_ADDR_MASK;
addrMasks[arrayIndex].sysAddr.extendedFileFlag = kPCCC_ADDR_EXTENSION;
addrMasks[arraylndex].sysAddr.fileNumber = fileNumber;
addrMasks[arraylndex].sysAddr.extendedElemFlag = kPCCC_ADDR_ EXTENSION;
addrMasks[arrayIndex].sysAddr.elementNumber = elementNumber;

-

EE I T R S N R R T I R N N N

PURPOSE: This function sends the PCCC Read-Modify-Write command (26H)
to the PLC-5/40V. This function will read the data from the
specified data table file element(s), apply the AND mask,
apply the OR mask and then return the restiits to the same
location.

IMPORTANT:

The controller may change the states of the original bits in

memory before this command can write the word back to memory.
Therefore, some data hits may be unintentially overwritten.

To prevent this from happening, we suggest that you use this
command to write into the storage area of the data table file

and have the controller read the word only AND NOT CONTROL IT!

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will'be copied to so the PLC-5/40V can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or D08.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space
in which the VME data is accessed. It can be A16 or A24.

B-78

Appendix B

Sample API Modules

PLC540V_RMW_ADDRMASKS_TYPE addrMasks contains system
addresses and their corresponding AND and OR masks.

This structure MUST be initialized by calling
plc540v_init_addrmasks() and each system address must

be added to this data structure by calling the
plc540v_add_addrmasks() function before using this function.

PLC540V_PCCC_RMW_RPY_TYPE reply contains PCCC's RMW command
specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = OXEOF100;
UWORD baseAddress = 0XFCO00;
VME_DATA WIDTH_TYPE width = kVME_D16_DATA WIDTH;
VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A24_ADDR_SPACE;

PLC540V_PCCC_RMW_RPY_TYPE reply;
PLC540V_STATUS_TYPE status;
PLC540V_RMW_ADDRMASKS_TYPE addrMasks;

register int addrCount =0;
UWORD fileNumber =7
UWORD elementNumber =20;
UWORD andMask = OxFFQO;
UWORD orMask = OX00AA;

plc540v_init_addrmasks(addrMasks);
for (addrCount=0; addrCount<5; addrCount++,elementNumber++)

plc540v_add_addrmasks(addrCount,
fileNumber,
elementNumber,
andMask,
orMask,
addrMasks,
&status);

plc540v_pccc_rmw(
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
addrMasks,
&reply,
&status);

Copyright Allen-Bradley Company, Inc. 1993

L I S R R N N R S T I I N T N N N N S S I R N N

void plc540v_pccc_rmw(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_RMW_ADDRMASKS_TYPE addrMasks,
PLC540V_PCCC_RMW_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The RMW command packet. */
PLC540V_PCCC_RMW_CMD_TYPE cmdPacket;

B-79

Appendix B

Sample API Modules

/* Let's initialize these packet to nothing. */

memset((char *) &cmdPacket, 0x0, kPLC540V_PCCC_RMW_CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_RMW_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

/* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.

*/

cmdPacket.cmd = kPLC540V_PCCC_RMW_CMD;

cmdPacket.fnc = kPLC540V_PCCC_RMW_FNC;

memmove((char *) &cmdPacket.addrMasks[0],
(char *) &addrMasks[0],
sizeof(PLC540V_RMW_ADDRMASKS_TYPE));

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_RMW_CMD_SIZE,
reply,
kPLC540V_PCCC_RMW_RPY_SIZE,
baseAddress,
KVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

P40VRPC.H

#ifndef PAOVRPC_H
#define P4AOVRPC_H 1

I T T
/I Definitions for the PCCC RESTORE PORT CONFIG COMMAND AND REPLY PACKETS //
I T

#include "p40vspcc.h”

#pragma pack(1)
/

/
/ INTEL VERSION OF DEFINITIONS ki]
/ /

/* The PCCC Restore Port Configuration command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd,;
UBYTE sts;
UWORD tns;
UBYTE fnc;
PLC540V_PCCC_DATA_TYPE data;
} PLC540V_PCCC_RPC_CMD_TYPE;
#define kPLC540V_PCCC_RPC_CMD_SIZE (sizeof(PLC540V_PCCC_RPC_CMD_TYPE))

B-80

Appendix B

Sample API Modules

/* The PCCC Restore Port Configuration reply packet structure. */
typedef struct

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

PLC540V_PCCC_DATA_TYPE data;
} PLC540V_PCCC_RPC_RPY_TYPE;
#define kPLC540V_PCCC_RPC_RPY_SIZE (sizeof(PLC540V_PCCC_RPC_RPY_TYPE))
#pragma pack()

void plc540v_pccc_restore_port_config(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_RPC_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);

#endif

P40VRPC.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vrpc.h”

/ /

/ PRIVATE DEFINITIONS /
/ /
#define kPLC540V_PCCC_RPC_CMD 0x0F

#define kPLC540V_PCCC_RPC_FNC 0x90

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

/
PURPOSE: This function sends the PCCC Restore Port Configuration command
to the PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V can
access its information.

PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16 or D08.

VME_ADDRESS_MODIFIER_TYPE addrMod defines the address space

*

*

*

*

*

*

*

* UWORD baseAddress contains the base address of the
*

*

*

*

*

*

* in which the VME data is accessed. It can be A16 or A24.

B-81

Appendix B

Sample API Modules

PLC540V_PCCC_RPC_RPY_TYPE reply contains PCCC's Restore Port
Configuration command specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE: ULONG vmeCmdBIkAddr = OxEOF100;
UWORD baseAddress = 0XFCOO0;
VME_DATA_WIDTH_TYPE width = kVME_D16_DATA_WIDTH,;
VME_ADDRESS_MODIFIER_TYPE addrMod =kVME_A24 ADDR_SPACE;

PLC540V_PCCC_RPC_RPY_TYPE reply;

PLC540V_STATUS_TYPE status;

void plc540v_pccc_restore_port_config(
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
&reply,
&status);

Copyright Allen-Bradley Company, Inc. 1993

EE S T R N I N N I T S N N N S I S

void plc540v_pccc_restore_port_config(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_RPC_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Restore Port Configuration command packet. */
PLC540V_PCCC_RPC_CMD_TYPE cmdPacket;

[* Let’s initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, kPLC540V_PCCC_RPC_CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_RPC-RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

/* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.

*/

cmdPacket.cmd = kPLC540V. PCCC_RPC_CMD;

cmdPacket.fnc = kPLC540V_PCCC_RPC_FNC;

plc540v_send_pccc. command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_RPC_CMD_SIZE,
reply,
kPLC540V_PCCC_RPC_RPY_SIZE,
baseAddress,
kVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-82

Appendix B

Sample API Modules

P40VSCM.H

#ifndef PAOVSCM_H
#define PAOVSCM_H 1

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*xikiciksokiiokioick |
/ /

/I Set CPU control and mode flags.
typedef struct

UBYTE modeSelect:2;
#define kKPLC540V_SCM_PROGRAM_LOAD_MODE 0X0

#define kPLC540V_SCM_TEST_MODE 0x1

#define kPLC540V_SCM_RUN_MODE 0X2

#define kPLC540V_SCM_NOCHANGE_MODE 0X3
UBYTE lock:1;

#define kKPLC540V_SCM_NO_LOCK_OUT_OTHERS 0X0

#define kKPLC540V_SCM_LOCK_OUT_OTHERS 0X1
UBYTE unused:5;

} PLC540V_PCCC_SCM_CTLMODE_TYPE;

/* The PCCC Set CPU Mode command packet structure. */
typedef struct
{
UBYTE reserved[4];
UBYTE cmd,;
UBYTE sts;
UWORD tns;
UBYTE fnc;
PLC540V_PCCC_SCM_CTLMODE_TYPE ctiMode;
} PLC540V_PCCC_SCM_CMD_TYPE;
#define kPLC540V_PCCC_SCM_CMD_SIZE (sizeof(PLC540V_PCCC_SCM_CMD_TYPE))

/* The PCCC Set CPU Mode reply packet structure. */
typedef struct

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd;

UBYTE sts;

UWORD tns;

UBYTE extsts;
} PLC540V_PCCC_SCM_RPY_TYPE;
#define kPLC540V_PCCC_SCM_RPY_SIZE (sizeof(PLC540V_PCCC_SCM_RPY_TYPE))
#pragma pack()

void plc540v_pccc_set_cpu_mode(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_SCM_CTLMODE_TYPE ctimode,
PLC540V_PCCC_SCM_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status);

#endif

B-83

Appendix B

Sample API Modules

P40VSCM.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vscm.h”

/ /
/ PRIVATE DEFINITIONS /

!/
#define kPLC540V_PCCC_SCM_CMD 0x0F
#define KPLC540V_PCCC_SCM_FNC 0x3A

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

~

PURPOSE: This function sends the PCCC Set CPU Mode command to the
PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V-can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER TYPE-@addrMod defines the address space
in which the VME datavis accessed. It can be A16 or A24.

PLC540V_PCCC_SCM_CTLMODE_TYPE defines the desired cpu mode
and whether locking should be applied.

PLC540V._PCCC_SCM_RPY_TYPE reply contains PCCC's Set CPU
Mode command specific reply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

RETURNS: Nothing.

EXAMPLE:
ULONG vmeCmdBIkAddr = OxEOF100;
UWORD baseAddress = 0XFCO00;
VME_DATA_WIDTH_TYPE width = kVME_D16_DATA_WIDTH,;
VME_ADDRESS_MODIFIER_TYPE addrMod =kVME_A24_ADDR_SPACE;

PLC540V_PCCC_SCM_CTLMODE_TYPE ctimode.modeSelect
= kPLC540V_SCM_RUN_MODE;

EE . S I I N N N N N N I T I N R O S

B-84

Appendix B

Sample API Modules

PLC540V_PCCC_SCM_RPY_TYPE reply;
PLC540V_STATUS_TYPE status;
void plc540v_pccc_set_cpu_mode(
vmeCmdBIkAddr,
baseAddress,
width,
addrMod,
ctimode,
&reply,
&status);

Copyright Allen-Bradley Company, Inc. 1993

EE I S I N

void plc540v_pccc_set_cpu_mode(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_SCM_CTLMODE_TYPE ctiMode,
PLC540V_PCCC_SCM_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

[* The Set CPU Mode command packet. */
PLC540V_PCCC_SCM_CMD_TYPE cmdPacket;

[* Let's initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, kPLC540V_PCCC_SCM_CMD_SIZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_SCM_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.

*

cmdPacket.cmd = kPLC540V_PCCC_SCM_CMD;

cmdPacket.fnc = kPLC540V_PCCC_SCM_FNC;

cmdPacket.ctiMode = ctiMode;

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_SCM_CMD_SIZE,
reply,
kPLC540V_PCCC_SCM_RPY_SIZE,
baseAddress,
kVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-85

Appendix B

Sample API Modules

P40VULAH

#ifndef PAOVULA_H
#define PAOVULA_H 1

[T LT T
1 Definitions for the PCCC UPLOAD ALL COMMAND AND REPLY PACKETS //
[T T T

#include "p40vspcc.h”

#pragma pack(1)

/ /

/ INTEL VERSION OF DEFINITIONS #*#*iioickickkiiieick |
/ /

/* The PCCC Upload All command packet structure. */
typedef struct

UBYTE reserved[4];
UBYTE cmd,
UBYTE sts;
UWORD tns;
UBYTE fnc;
} PLC540V_PCCC_ULA_CMD_TYPE;
#define kPLC540V_PCCC_ULA_CMD_SIZE (sizeof(PLC540V_PCCC_ULA_CMD. TYPE))

/* The PCCC Upload All reply packet structure. */
typedef struct
{

UBYTE InhHi;

UBYTE InhLo;

UBYTE reserved[4];

UBYTE cmd,;

UBYTE sts;

UWORD tns;

PLC540V_PCCC_DATA_TYPE data;

UBYTE extsts;
} PLC540V_PCCC_ULA_RPY_TYPE;
#define kPLC540V_PCCC_ULA_RPY. SIZE (sizeof(PLC540V_PCCC_ULA_RPY_TYPE))
#pragma pack()

void plc540v_pccc_upload_all(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,

PLC540V_PCCC_ULA_RPY_TYPE *reply,

PLC540V.STATUS_TYPE *status);

#endif

B-86

Appendix B

Sample API Modules

P40VULA.C

#include <stdio.h>
#include <stdlib.h>
#include <mem.h>
#include "epc_obm.h”
#include "epc_err.h”
#include "busmgr.h”
#include "p40vula.h”

/ /
/ PRIVATE DEFINITIONS /

!/
#define kPLC540V_PCCC_ULA_CMD 0x0F
#define KPLC540V_PCCC_ULA_FNC 0x53

/ PRIVATE TYPE DEFINITIONS /

/ PRIVATE FUNCTIONS /

PURPOSE: This function sends the PCCC Upload All command to the
PLC-5/40V.

INPUT: ULONG vmeCmdBIkAddr contains the VME address where the
command block will be copied to so the PLC-5/40V-can
access its information.

UWORD baseAddress contains the base address of the
PLC-5/40V.

VME_DATA_WIDTH_TYPE width contains the data width that
should be used for the copy operations. It can be D16
or DO8.

VME_ADDRESS_MODIFIER TYPE-@addrMod defines the address space
in which the VME datavis accessed. It can be A16 or A24.

PLC540V_PCCC_ULA_RPY_TYPE reply contains PCCC'’s Upload All
command specificreply packet.

OUTPUT: PLC540V_STATUS_TYPE *status will contain the final status
of requesting this function. This status could be and EPC
or PLC-5/40V value.

EE R R T R N T I S I S R

RETURNS: Nothing.

B-87

Appendix B

Sample API Modules

* EXAMPLE:

* ULONG vmeCmdBIkAddr = OxEOF100;

* UWORD baseAddress = 0XFCO00;

* VME_DATA_ WIDTH_TYPE width = kVME_D16_DATA WIDTH;
* VME_ADDRESS_MODIFIER_TYPE addrMod = kVME_A24_ADDR_SPACE;
* PLC540V_PCCC_ULA_RPY_TYPE reply;

* PLC540V_STATUS_TYPE status;

* void plc540v_pccc_upload_all(

* vmeCmdBIkAddr,

* baseAddress,

* width,

* addrMod,

* &reply,

* &status);

*
*
*

Copyright Allen-Bradley Company, Inc. 1993

void plc540v_pccc_upload_all(
ULONG vmeCmdBIkAddr,
UWORD baseAddress,
VME_DATA_WIDTH_TYPE width,
VME_ADDRESS_MODIFIER_TYPE addrMod,
PLC540V_PCCC_ULA_RPY_TYPE *reply,
PLC540V_STATUS_TYPE *status)

/* The Upload All command packet. */
PLC540V_PCCC_ULA_CMD_TYPE cmdPacket;

[* Let’s initialize these packets to nothing. */

memset((char *) &cmdPacket, 0x0, KPLC540V_PCCC_ULA_CMD.SiZE);
memset((char *) reply, 0x0, kPLC540V_PCCC_ULA_RPY_SIZE);
memset((char *) status, 0x0, sizeof(PLC540V_STATUS_TYPE));

[* Let's establish the command packet contents... Note that
since we set this block with zeros originally, we don't
need to explicitly set them here.

*/

cmdPacket.cmd = kPLC540V_PCCC_ULA_CMD;

cmdPacket.fnc = kPLC540V_PCCC_ULA. FNC;

plc540v_send_pccc_command(
vmeCmdBIkAddr,
&cmdPacket,
kPLC540V_PCCC_ULA_CMD_SIZE,
reply,
kPLC540V_PCCC_ULA_RPY_SIZE,
baseAddress,
kVME_NO_INT_LEVEL,
0,
width,
addrMod,
status);

B-88

Environmental
Specifications

Appendix

Specifications
Characteristic Value
Temperature | Operating | 0-65° C at point of entry of forced air with-200 LEM of air flow
across the circuit board. Derated 2° C per 1000 it (300m) over
6600 ft (2000m). 2° C per min max excursion gradient
Storage -40° -85° C
5 C per min max excursion gradient
Humidity Operating | 0-90% noncondensing
Storage 0-95% noncondensing
Altitude Operating | 0-10,000 ft (3000.m)
Storage 0-40,000t (12,000 m)
Processor Weight 21 ounces (595 grams) PLC-5/V30
24 ounces (680 grams (PLC-5/V40, -5/V40L, -5/V80)
Vibration Operating | 0.015 inch (0.38 mm) P-P displacement with 2.5 g peak (max)
acceleration over 5-2000 Hz
Storage 0.030 inch (0.76 mm) P-P displacement with 5.0 g peak (max)
acceleration over 5-2000 Hz
Shock Operating | 30 g, 11 ms duration, half-sine shock pulse
Storage 50 g, 11 ms duration, half-sine shock pulse
Power Maximum 21 watts
Typical 16 watts
Current +5V 4.0 A (max), 3.2 A (typical)

Agency Certification (when
product or packaging is

marked)

CE marked for all applicable directives

C-1

Appendix C

Specifications

VMEDbus Specifications

Characteristic Value
(Revision C.1)

Master address | A16, A24
Master transfer | DO8(EQ), D16
Slave address Al6, A24

Slave transfer

DOS(EO), D16

Interrupter

I(1-7), D08(0)

Interrupt handler

IH(1-7), DO8(O)

Requester

ROR,RWD

System controller

SYSCLK, IACK daisy chain, bus timer, SGL arbiter

ACFAIL

Input required for PLC-5/VME processor to maintain ladder and data
files integrity. VME power must assert ACFAIL at least 9 ms before the
+5VDC supply drops below 4.75VDC.

PLC-5/VME ™ Battery Specifications (1770-WV/A)

Battery used in this processor:

PLC-5/V30, -5/V40, -5/V80

Worst-case Battery Life Estimates

At this temperature: ~ Power off 100%: Power off 50%: Battery Duration after
the LED lights O
60°C 180 days ’ 360 days (B days @ 80pA
25°C 290 days 580 days (D days @ 50pA

o

O The battery indicator (BATT) warns you when the battery is low. These durations are based on the battery supplying the only power to the
processor (power to the chassis is off) once the LED first lights.

C-2

Appendix C

PLC-5/VME ™ PLC-5/V30 ™ PLC-5/v40 ™ PLC-5/V40L ™ PLC-5/V80 ™
Processor Specifications (1785-V30B) (1785-v40B) (1785-V40L) (1785-V80B)
Maximum User Memory Words 32K 48K 0O 100K O
Maximum Any Mix 896 1920 2944
Total /0 Complementary 896 in and 896 out 1920 in and 1920 out 2944 in and 2944 out
Maximum Analog I/O 896 1920 2944
' 0.5 ms per K word (bit logic)
PG S TS 2 ms per K word (typical)
0.5 ms (extended local)
, 10 ms per rack @ 57.6 kbps
0 Scan Time 7 ms per rack @ 115.2 kbps
3 ms per rack @ 230 kbps
57.6 kbps
RIO Transmission Rate 115.2 kibps
230 kbps
Maximum Number of MCPs 16
Number of Data Highway Plus ™ (DH+™) 9 4 2 4
or Remote I/O Ports (Adapter or Scanner)
Number of Extended-Local I/O Ports N/A N/A 1 N/A
Maximum Number of I/0O Racks 7 15 23
Maximum Number, Extended Local N/A N/A ‘ 16 N/A
of I/0 Chassis Remote 28 60 92
Number of RS-232 Ports 1
Backplane Maximum 3.0A 33A 35A 33A
Current Load Typical 24A 27A 29A 27A
Weight 0.56 kg (1.25 Ibs) 0.67 kg (1.5 Ibs)

0O The PLC-5/V40, -5/V40L, and -5/V80 processors have a limit of 32K words per data-table file.

C-3

Appendix Objectives

VME Backplane Jumpers

VME LEDs

Appendix .

Troubleshooting

Read this appendix when you troubleshoot the PLC-5/VME processor. For
the PLC-5/VME processor to maintain integrity of the ladder program and
data files, the VME power supply must assert ACFAIL at least 9 ms in
advance of the +5 VDC supply dropping beneath 4.75V. If power is
removed and re-applied to the VME system and the PLC-5/VME powers
up faulted after previously having a good program in it, it may be the result
of not having ACFAIL properly asserted on the VME backplane.

The VMEDbus contains several daisy-chiained control signals. Almost all
VMEDbus backplanes containjumpers for these control signals to allow
systems to operate with empty slots. Failing to install these jumpers
properly is a common source of problems in configuring a new
VMEDbus system.

See Chapter 2 for.detailed information on setting these jumpers.

The LEDs on the front panel have the following meaning:

When you see | It means that:
this light on:

Battery low The battery output is weak; the battery needs to be replaced.

Proc run/fault If green, the processor is in run mode and has not faulted.
If red, the processor has faulted.

Force Continuous on denotes forces enabled.

Blinking denotes forces present but not enabled.
ChO status Data is being transmitted or received on channel 0.
SYSFAIL The processor is driving the VMEbus SYSFAIL signal.

Master access | The processor is performing a VMEbus access.

Slave access | Another VMEbus master is performing an access to the processor.

D-1

Appendix D

Troubleshooting

Message Completion and For unrecognizable messages, ER is set along with an error code. The
Status Bits Error Codes error codes are:

Code Explanation

0000H | Success

0001H | Invalid ASCII message format

0002H | Invalid file type

0003H | invalid file number

0004H | Invalid file element

0005H | Invalid VME address

0006H | Invalid VME transfer width

0007H | Invalid number of elements requested for transfer
0008H | Invalid VME interrupt level

0009H | Invalid VME interrupt status-id value

000AH | VMEbus transfer error (bus error)ii \‘
000BH | Unable to assert requested.interrupt (already pending)

000CH | Raw data transfer'setup error

000DH | Raw data transfer crash.(PLC switched out of run mode)

000EH | Unknown message type (message type not ASCII)

Continuous-Copy Code. | Explanation

Error Codes 01H VMEbus transfer error (bus error)
07H Bad data address
FDH Bad data transfer length

FEH Unacknowledged end-of-copy interrupt

Command-Protocol These are the command-protocol codes placed in the error-code field of the
Error Codes command control register when the ERR bit is 1.

Code Explanation
00H No error

01H Invalid value in command register

02H Cannot access first word of command block (usually a VMEbus bus error)
03H Cannot access other than first word of command block

04H Cannot write response word in command block

D-2

Appendix D

Troubleshooting

Response-Word These are errors reported in the response word of the command block

Error Codes when the command cannot be carried out successfully. The even byte of
the response word describes the type of error and the odd byte describes
the time or situation of occurrence.

Code Explanation

00FFH | Command successfully completed

0200H | Bad address modifier in command block

0300H | Bad VME address in command block

0400H | Bad command word (word 0)

0500H | Bad data/packet size (word 10)

0600H | Local PCCC queue overflow; PCCC not processedi
8000H | VMEbus error

PCCC Command The STS field contains errors found by the remote node receiving the
Status Codes command. The following table contains error codes (in hex) that you may
find in the STS field and a general description of each.

Code (hex) | Explanation

00 No error

10 lllegal command or format

20 Host has a problem and will not communicate

30 Remote node host is missing, disconnected, or shut down
40 Host could not complete function due to hardware fault
50 Addressing problem or memory protect rungs

60 ' Function disallowed due to command protection selection
70 ' Processor is in program mode

80 Compatibility mode file missing or communication zone problem
90 Remote node cannot buffer command

A0 Not used

BO Remote node problem due to download

Co Cannot execute command due to active IPBs

DO Not used

EO Not used

FO There is an error code in the EXT STS byte

D-3

Appendix D

Troubleshooting

The codes returned in the EXT STS (extended status) field when the
remote error (STS) is FOH are listed below:

Code (hex) | Explanation
0 Not used
1 A field has an illegal value
2 Less levels specified in address than minimum for any address
3 More levels specified in address than system supports
4 Symbol not found B
5 Symbol is of improper format
6 Address does not point to something usable
7 File is wrong size v
8 Cannot complete request, situation has changed since start of command
9 Data or file is too large
A Transaction size plus word addﬁas;stioo large
B Access denied, improper privilege
C Condition cannot be generated—resource is not available
D Condition alre;d; exists—resource is already available
E Command cannot be executed
F ' Histogram overflow
10 No access
11 ' llegal data type
12 Vlhvalid parameter or invalid data
13 Address reference exists to deleted area
14 Command execution failure for unknown reason
15 Data conversion error
16 Scanner not able to communicate with 1771 rack adapter
17 Adapter cannot communicate with module
18 1771 module response was not valid

19 Duplicated label

1A File is open; another node owns it

1B Another node is the program owner
1CTOFF | Not used

If you receive a code other than the above, you are using a PCCC not
described in this manual and should consult the documentation you are
using to understand that PCCC and its specific error codes.

D-4

Avoiding Multiple
Watchdog Faults

If you continue to encounter

the hardware error, call your $
Allen-Bradley representative.

Inserting Ladder Rungs at
the 56K-Word Limit

This consideration applies to
PLC-5/V80 processors when you are
editing a program file that approaches
the maximum file limit of 57,344 words.

Appendix D

Troubleshooting

If you encounter a hardware error or watchdog major fault, it may be
because multiple watchdog faults occured while the processor was busy
servicing a ladder-related major fault. The hardware error occurs when the
fault queue, which stores a maximum of six faults, becomes full and
cannot store the next fault.

Before calling a service representative when you encounter either a
hardware error or multiple watchdog faults, try executing the
following techniques:

If you encounter a:
Then:

watchdog error Extend the watchdog timer so that the real run-time error is not masked.

and a fault bt Check your major fault bits. Ignore the watchdog faults and use any

remaining fault bits to help indicate the source of the processor fault.

hardware error 4. Power down; then power up the processor.
5. Reload the program.
6. Set the watchdog timer to a value = 10 X current setting
7. Run the program.again.

Performirig run-time or program-mode editing of ladder files that approach
the maximum program file size of 57,344 words could:

= prevent the rung from being inserted
= cause suspension of the operation by 6200 Series PLC-5 Programming
Software (release 4.3 and later)

To avoid this problem, segment your program file by using modular
programming design practices, such as main control programs (MCPs),
sequential function charts (SFCs), and the jump to subroutine (JSR)
instruction.

If you cannot segment your program file, save the file often while
editing it.

If you encounter the error “Memory Unavailable for Attempted
Operation” while performing online edits, then use your programming
software package to clear memory and restore the last-saved version of
your program.

Appendix D

Troubleshooting

Recovering from Possible

Memory Corruption

‘ Examining Fault Codes

Avoiding Run-time Errors
when Executing FBC and
DDT Instructions

D-6

e ATTENTION: Processor memory could become altered without

indication if you lose power while performing any of the
following online editing operations:

= creating a rung
= assembling online edits
= creating and/or deleting data table space

If you lose power while editing your program, use your programming
software package to clear potentially altered memory and restore the
last-saved version of your prograr.

Fault routines execute when a-PLC-5 processor encounters a run-time error
(major fault) during program execution.

A fault routine processes the major fault bit found in S:11 and determines
the course of program execution based on the fault bit present. Fault
routines provide a-means,to either:

= gsystematically shut down a process or control operation
= log and clearthe fault and continue normal operation

ATTENTION: Clearing a major fault doest correct the cause
of the fault. Be sure to examine the fault bit and correct the cause
of the fault before clearing it.

For example, if a major fault is encountered, causing bit S:11/2
to be set, which indicatespgogramming errordo not use a
fault routine to clear the fault until you correct your program.

For more information about fault codes, see your programming software
documentation set.

To avoid encountering a possible run-time error when executing FBC and
DDT instructions, add a ladder rung that clears S:24 (indexed addressing
offset) immediately before a FBC or DDT instructinn.

Appendix

Cable Connections

Cable Connections for Table E.A lists the cables that you use if you have an Allen-Bradley
Communication Boards communication board in your programming terminal.

Table E.A

Allen-Bradley Communication Board Cables

If you have this Use this cable: N

communication board:

1784-KT 1784-CP

1784-KL 1784-CP6 or

1784-KT? 1784-CP with 1784-CP7 adapter

1784-CP8 adapter
1784--KL/B
1784-KTK1 1784-CP5 with 1785-CP7 adapter

For pinouts for these Allen-Bradley cables, see pages E-11 and E-12.

Cable Connections for The.diagrams in this section show the cable connections for serial-port
Serial-Port Communications commiunications.

For these wiring diagrams: See page:

Cables 1 through 6 E-6

Allen-Bradley cables E-7

E-1

Appendix E

Cable Connections

Front Panel The channel 0 connector on the front panel is an RS-232C serial port. Itis
a 25-pin D-shell connector whose pins are defined in the following table.

Pin Signal Pin Signal

1 shield 13 ground

2 transmit data 14 ground

3 receive data 15 shield

4 request to send 16 no connect
5 clear to send 17 no connect
6 data set ready 18 ground

7 ground 19 ground

8 carrier detect 20 data terminal reagy o
9 ground 21 no eonnect
10 no connect 22 grouF
11 no connect 23 ~ 7 Lg;mrﬁ

12 no connect 25 o connect

E-2

9-Pin Serial Port

1784-T50
1784-T53
6160-T60
6160-T70
IBM PC/AT

cable #1

Terminal

Terminal

Appendix E

Cable Connections

1770-KF2 1784-CPS PLC-5/10, -5/12, 5/15, -5/25
PLC-5/11, -5/20, -5/30,
& 1784-CP7 | -5/40, -5/60, -5/40L,
-5/60L, -5/80, and
-5/VME
1784-CAK 1785-KE 1770-CD
Series B PLCS

Note: 1785-KE series A uses 1784-CP5 with<PLC-5/10, -5/12, -5/15, and -5/25
processors and 1785-CP5 with 1785-CP7 adapter with PLC-5/11, -5/20, -5/30, -5/40,
-5/60, -5/40L, and 5/60L processors.

To channel 0 of PLC-5/11,

and -5/\VME

Terminal 17848860 -5/120, -5/30, -5/40, -5/60,
-5/40L, -5/60L, -5/80,
and -5/VME
) cable #4
Terminal Modem
Phone Line
PLC-5/10, -5/12, -5/15, and -5/25 |~ ~1o+CP® 1770-kF2 | cable #6 Modem
PLC-5/11, -5/20, -5/30
-5/40, -5/60, -5/40L, +1784-CP7
-5/60L, -5/80, and
-5IVME
. cable #4
Terminal Modem
Phone Line
To channel 0 of PLC-5/11,
5/20, -5/30, -5/40, cable #6 Modem
-5/40L, -5/60L, -5/80,

E-3

Appendix E

Cable Connections

25-Pin Serial Port

1784-147 . cable #2 1784-CP5
IBM XT Terminal 1770-KF2 PLC-5/10, -5/12, -5/15, -5/25
IBM PS/2 Model 30 PLC-5/11, -5/20, -5/30,
IBM PS/2 Model 60 - -5/40, -5/60, -5/40L,
+1784CPT | 6oL, 580, and
-5IVME
Terminal 1784-CXK 1785-KE 1770-CD PLCS
Series B

Note: 1785-KE Series A uses 1784-CP5 with PLC-5/10; -5/12, -5/15, and -5/25
processors and 1785-CP5 with 1785-CP7 adapter with PLC-5/11, -5/20, -5/30, -5/40,
-5/60, -5/40L, -5/60L, and 5/80 processors.

1784-CP11 To channel 0 of PLC-5/11,
Terminal -5120, -5/30, -5/40, -5/60,
-5/40L, -5/60L, -5/80, and
-5/VME

] cable #6
Terminal Modem

Phone Line
PLCG A TTBACPS | yqg gy | Cable#6 Modem
1784-CP6 0r1784-CP5 with 1784-CP7
for PLC-5/11, -5/20, -5/30, -5/40, -5/60,
-5/40L, -5/60L, -5/80, and -5/VME
processors
) cable #6
Terminal Modem
Phone Line
To channel 0 of PLC-5/11
' cable #6 *
-5/20, -5/30, -5/40, -5/60, Modem
-5/40L, -5/60L, -5/80, and
-5IVME

* Requires either a gender changer or one end of cable #2 fitted
with a male 25-pin plug.

E-4

9-Pin Serial Port

6120
6122

Terminal

Appendix E

Cable Connections

cable #3 1784-CP5
1770-KF2 PLC-5/10, -5/12, -5/15, -5/25
PLC-5/11, -5/20, -5/30,
& 1784-CP7 -5/40, -5/60, -5/40L,
-5/60L, -5/80, and
-5IVME
. 1784-CYK 1785-KE 1770-CD
Terminal Series B PLC-5

Note: 1785-KE series A uses 1784-CP5 with PLC-5/10, -5/12, -5/15, and -5/25
processors and 1785-CP5 with 1785-CP7 adapter with PLC-5/11;"-5/20, -5/30, -5/40,
-5/60, -5/40L, 5/60L, -5/80, and -5/VME processors.

. cable #5
Terminal Modem
Phone Line
pLCs | LBACPS | igg Ky | CabIEHE Modem
. cable #5
Terminal Modem
Phone Line
To channel 0 of PLC-5/11
' ble #6
5120, -5/30, -5/40, cave Modem

-5/80, and -5/VME

-5/60, -5/40L, -5/60L,

E-5

Appendix E

Cable Connections

Cable Pin Assignments The following diagrams show the pin assignments for the cables that you
need for serial-port communications.
Cable #1 Cable #2 Cable #3
9-pin SKT 25-pin SKT 25-pin SKT 25-pin SKT 9-pin SKT 25-pin SKT
IBM AT 1770-KF2 IBM XT 1770-KF2 Computer 1770-KF2
(female) (female) (female) (female) (female) (female)
RXD2 ———— 2 T™XD2 ——— 3 ™XD2 ———— 3
GND5 ————— 7 GND7 ———— 7 GND7 —— — 7
T™XD3 ———— 3 RXD3 ——— 2 RXD3 ——— 2
DCD1 — |~ 4RTS RTS4 — |~ 4RTS RIS4 —= | 4RTS
DTR4 — — 5CTS CTS5 — — 5CTS CTS5 — — 5CTS
DSR6 —
_ o DSR6 — — 6DSR DSR6 — — 6DSR
S ocos | | 500D oeoe | | 500
— — 20DTR — — 20DTR
- oDIR DTR 20 DTR9
Cable #4 Cable #5 Cable #6
9-pin SKT 25-pin 9-pin SKT 25-pin 25-pin SKT 25-pin
IBM AT Modem Computer Modem Computer Modem
(female) (male) (female) (male) (female) (male)
pe? 5 RNG 1 2 CHS 1 1
XD 3 > TXD 2 2 TXD 2 2
DTR 4 % RXD 3 3 RXD 3 3
GND 5 RTS4 4 RTS 4 4
SR e g CTS 5 5 CTS5 5
RTS 7 " DSR'6 6 DSR 6 6
CTS8 5 GND7 7 GND 7 7
RNG 9 % DCD 8 8 DCD 8 8
CASE) DTR 9 20 DTR 20 20

E-6

Cable Specifications

Appendix E

Cable Connections

The specifications for each Allen-Bradley cable used for communications
are shown on the following pages. See Table E.B.

Table E.B
Cable Specifications
For: To: Use This Cable: See Page:
6160-T53 1785-KE 1784-CAK E-8
6160-T60
6160-T70
6121
IBM PC/AT
1784-T45 1785-KE 1784-CXK E-9
IBM XT
6120 1785-KE 1784-CYK E-10
6122
PLC-5/10, -5/12, -5/15, | Terminal 1784-CP5 E-11
-5/25 Processors (using a 1784-KTK1)
Terminal 1784-CP E-12
(using a-1784-KT,
-KT2, or KL, -KL/B)
PLC-5/11, -5/20, -5/30, |Terminal 1784-CP6 E-13

-5/40, -5/60, -5/40L,
-5/60L, -5/80, -5/VME
Processors

(using'a 1784-KT
‘ or -KT2, or -KL, -KL/B)

Terminal

(using a 1784-KTK1)

|1784-CP5witha | E-14
1785-CP7 adapter

E-7

Appendix E

Cable Connections

E-8

Figure E.1
Interconnect Cable—1784-CAK
6160-T53, -T60, -T70, 6121, IBM PC/AT to 1785-KE

15 —pin D-shell 9 —pin D-shell
Connector Connector
Pin Male Pin Female

1785KE IBM -PC/AT

N

i)
sl]
6 D —sub 9 —pin
8 (IBM —PC/AT)

11

D —sub 15 -pin
(1785-KE)

14936

Appendix E

Cable Connections

Figure E.2
Interconnect Cable—1784-CXK
1784-T45, IBM XT to 1785-KE

15 —pin D -shell 25 —pin D —shell
Connector 289.6 cm Connector
Pin Male (114 in.) Pin Female
Shielded Cable
24 AWG
6 9
1785-KE
1 —
P RED
3 i : 2
| | BLK
7 ; ; 7
1 1 WHT
2 — o\ 3
4 4
1| -
6 6
8 8
11 20
D —sub 15 —pin D —sub 25 Skt
(1785-KE) (PC =XT)

12727

E-9

Appendix E

Cable Connections

Figure E.3
Interconnect Cable—1784-CYK
6120, 6122 to 1785-KE

15 —pin D —shell 9 —pin D -shell
Connector 289.6 cm Connector
Pin Male (114in) Pin Female
Shielded Cable
24 AWG 6
6 9
9
1785-KE 6120-COA/COX
1 e
O RED
3 i : 2
| | BLK
7 i i 7
| | WHT
2 ! ! 3
13 - PLK
4 4
5 |: 5
6 D —sub 9 Skt
8 (6120 -COA/COX)
11
D —sub 15=pin
(1785KE)

12726

E-10

Appendix E

Cable Connections

Figure E.4
Interconnect Cable—1784-CP5
Processor to Terminal (using a 1784-KTK1)

15 —pin D-shell
9 —pin D-shell Connector
Connector Pin Female

Pin Male

Fﬁ.z m —ﬂ
(10.501t.)

Terminal

Processor

Clear

Ol o N oo g &~ O DN -

=
o

BLU BLU

=
[EN

[EEN
N

=
w

N
~

Ol 0 NN o g B W DN

15

Processor Terminal
(9 —pin Connector) (15 -Skt Connector)

14938

E-11

Appendix E

Cable Connections

Figure E.5
Interconnect Cable—1784-CP
Processor to Terminal (using a 1784-KT or 1784-KL)

Industrial 3.2m
Terminal End ~—— (10.50 ft.)

10.2 cm 10.2 cm

—
D (4in.) (4in.) PLC-5 End
(l)

Il

g

62
61
60

—J
[—

37
36 :
35 |
34
33

Clear Clear ---.

Blue Blue

—
——

|

O O N || | W|N|PF

3
2
1

Industrial PLC-5 End

Terminal End
16860a

E-12

Appendix E

Cable Connections

Figure E.6

Interconnect Cable—1784-CP6

PLC-5/30, -5/40, -5/60, or -5/80 Processor to T erminal (using 1784-KT ,
1784-KL, 1784-KL/B, or 1784-KT2)

22
431 1
(@)
q 6 | E*‘ Pin 1
62 21
gy i Pin 3
8-pin Mini-DIN ™ 8
Processor End
62-pin D-shell
Terminal End
62
61
/ 8
/ 7
Clear
38 6
37 5
Clear
36 . . 4
Shield Shield
85 3
Blue
34 2
Blue
33 1
32
31 8-pin Mini-DIN
N Processor End
\
3
2
1
62-pin
D-shell
Terminal
End 18378

E-13

Appendix E

Cable Connections

Figure E.7

1784-CP7 Adapter —Interconnect Cable Adapter to 1784-CP Connects
PLC-5/30, -5/40, -5/60, -5/80 or -5/VME Processor to Terminal (using
1784-KT, 1784-KL, 1784-KL/B, 1784-KTK1, or 1784-KT2)

9-pin D-shell 8-pin Mini-DIN
Terminal End Processor gng

v
[

#3°7 Pin1

Png Pin3
8
7
Clear
6
9 5
8 _ _ 4
7 Shield Shield 3
6 2
Blue Blue
5 1
4
8-pin Mini-DIN
3 Processor gnd
2
Clear
1
9-pin D-shell
Terminal End

18377

E-14

Index

Symbols

HEMpty*,

Numbers

1770-CD,
1770-KF2,
1771-AF,

1771-AS,
1771-CXT,
1771-DCM,
1771-KT2,
1771-N,
1771-ASB,
1772-SD, -SD2,
1775-S4A, -S4B,
1775-SR,
1784-CP10,
1784-CP11,
1784-CAK,
1784-CP,
1784-CP5,
1784-CPS,
1784-CP7,
1784-CXK,
1784-CYK, E-10
1784-KL,
1784-KL/B,
1784KT,
1784-KTK1,
1785-KE,
25-pin serial port,
6008-LTV processor, compatibility,
6008-SQH1, -SQH2,
6120,

6122,

9-pin serial port,

A

Address Range, SW2,
Apply port configuration,

B

Basic configuration,
block-transfer data

defined, |V
timing,
C
Cable, specifications,
Cables,
connecﬂns for communication boards,
E-1
connections for serial communications,

pin assignments,
remote /0,
serial port,
specifications,

Channel 0, connecting a programming

terminal,

Command protocol error codes,

Command types,
continuous-copy-to-VME,
continuous-copy-from-VME,
handle-interrupts,
send-PCCC,

Commands,
command protocol error codes,

continuous copy error codes,

continuous-copy commands, ﬁ 4-10
continuous-copy commands, _|5-2
copy operations, notes,
copy synchronization
handle-interrupts,
response word error codes _. .
Send-PCCC,
COMMON.C, sample,
COMMON.H, sample,
Compatibility with the 6008-LTV processor,
Compatibility with the PLC-5/40 processor,
Configuration, processor,
Configuration registers,
command control and lock register,
command control register,

Index

device-type register, _|3-5
eight configuration register structure,

ID register, _|3-5
offset register, _|3-6
status/control register, _|3-5

Connecting to I/O,
Connectors, remote 1/0,

Continuous copy error codes,

Continuous-copy commands,

Copy operation, notes, _|5-3

Copy synchronization,
CPU based driver examples,

D

Daisy-chain connection,

Daisy—chain connection,
Descriptions, header bit/byte,
DH+

daisy—chain connection;
direct connect, E
trunkline/dropline connection,) _[2-13

discrete-transfer data

defined, |V
timing,

Download all request, _[6-23
Download complete, m
DOWNLOAD.CPP, sample,
DOWNLOAD.MAK, sample,

E

Echo,

EEPROM,

Electrostatic discharge,
Environmental specifications,
Error codes, VME status file,

example of PLC-5/VME processors, front
view,

Extended-local I/0, link termination,

F
Features,

Front panel,
LEDs, _|D-1

Front view,

G

Get edit resource,
Grounding,

H

Handle-interrupts command,
Header bit/byte descriptions,

1/0 housekeeping,

/0, connecting,

[dentify host and some status,
immediate 1/0,
Insertion into a system,

Installation, _[2-1

connecting to 1/0,
grounding,
insertion into a system,
processor configuration,
SW1, station numbers,
SW2, address range,
switches location,

VME backplane jumpers,
Instruction set,
Interface, VMEbus,

interrupts, effects on scan time,

K
keyswitch, operation,

L

Ladder Messages,
Check VME status file,

Copy from VME,
Copy to VME,
Send VME interrupt,

Ladder Program Interfaces, _|4-1
logic scan. See program scan

M

Message Completion,

Message Completion and Status Bits,

Messages, ladder,

Index -3

Modem, _[E-1
See also Programming Terminal

P

P40CCCO.C, sample,
P40CCCO.H, sample,
P40VAPC.C, sample,
P4OVAPC.H, sample,
P40VDLA.C, sample,
P4OVDLA.H, sample,
P4OVDLC.C, sample,
P40VDLC.H, sample,
P4OVECHO.C, sample,
PAOVECHO.H, sample,
P40VGER.C, sample,
PAOVGER H, sample,
P4OVHINT.C, sample,
P40VHINTH, sample,
P4OVIHAS.C, sample,
P40VIHAS.H, sample,
P40VRBP.C, sample,
P40VRBPH, sample,
P4OVRER.C, sample,
PAOVRERH, sample,
PAOVRMW.C, sample,
PAOVRMW.H, sample,
P40VRPC.C, sample,
P4OVRPC H, sample,
P40VSCM.C, sample,
P40VSCM.H, sample,
P40VSPCC.C, sample,
P40VSPCC.H, sample,
P4OVULA.C, sample,
PAOVULA H, sample,
P4OVULC.C, sample,
PAOVULC.H, sample,
P4OVWBP.C, sample,
PAOVWBPH, sample,
Panel, front,
PCCC command packet,
PCCC reply packet,
PCCC.H, sample,
pCCCs, [6-1

apply port configuration,

download all request, _[6-23
download complete, _|6-25

Echo,

get edit resource,

identify host and some status,
PCCC command packet format, _[6-1]
PCCC reply packet format,

read bytes physical,
read-modify-write, _[6-8}

restore port configuration,
return edit resource, _|6-30

set CPU mode, - |6-

status codes,
supported,
typed read,
typed write,

upload all request,
upload complete,

)

PLC-5/40 processor, compatibility,
PLC-V5 processor, overview,
PLC-5/VME processor, front view,

PLC-V5 and PLC-5/40 processors,
differences, H

PLC-V5 vs. PLC-5/40 processors, features,

Processor
cables to communication interfaces,
connecting DH+ link,
connecting remote /O link,
programming terminal, cable
connections, _[E-7

processor

keyswitch operation,
scanning,

Processor configuration, _|2-2

Processor module, programming terminal,
cable connections,

Processor specifications,
PROG. See Keyswitch operation
program execution,
program scan

executing rungs selectively,

false versus true logic,
introduction to,
using interrupts,
Programming a processor
through channel 0,
using a modem,
Programming Terminal, cable connections,

Index

Programming terminal
cable connections,

direct connection, |2-12
modem,
serial connection, _[2-14

Programs, example,

R

Read bytes physical,
Read-modify-write,
REM. See Keyswitch operation
Remote I/0

cable lengths,

connecting link to PLC-V5 processor,
making connections,

terminating the link,
remote /O chassis, defined, _@
remote 1/O link, defined, Jﬂ
Response word error codes,

Restore port configuration,
Return edit resource,

RUN. See Keyswitch operation

S

sample programs
COMMON.C,
COMMON.H,
DOWNLOAD.CPP,
DOWNLOAD.MAK, _[A-34

P4OVAPC.C, [B-47
P4OVAPC.H, [B-46]
P40vCCO.C, [B-18
P40VCCOH, [B-17
P4OVDLAC, [B53
P4OVDLAH, [B-52
P40VDLC.C, [B-56]
P4OVDLCH, [B55
P40VECHO.C, [B-59
P40VECHOH, |B-58]
P40VGER.C, [B-62)
P4OVGERH, [B61
P4OVHINT.C, [B-33
P4OVHINTH, [B-32]
P40VIHAS.C, [B-67
P4OVIHASH, [B6/
P40VRBPC, [B-70
P40VRBPH, [B-69
P4OVRER.C, [B-73
P4OVRERH, [B72
P4OVRMW.C, [B-76

P4OVRMW.H, [B-75]
P4OVRPC.C, [B-81
P4OVRPC.H, |B-80
P4OVSCM.C, [B-84
P4OVSCM.H, [B-83
P4OVSPCC.C, [B-40
P40VSPCC.H, _|B-39)
PAOVULA.C, [B-87

PAOVULAH, [B-86
P4OVULC.C, [B-50
PAOVULC.H, [B-49
PAOVWBP.C, [B-44
P4OVWBPH, [B43
PCCC.H, ([B30

UPLOAD.CPP, |A-
UPLOAD.MAK,

VMEDEMO.CPP,
VMEDEMO.MAK,

scanning
discrete-transfer data

to processor-resident I/O,
to remote /O,
introduction to,
Send-PCCC command,
Serial port

cables,

connecting a programming terminal,
[2:14

Set CPU mode,

Specifications
environmental,
processor,
VMEbus,

Status Bits, _|4-6

Status codes,
Supported PCCCs,
SW1 switch,

SW1, station numbers,
SW2 switch,
SW2, address range,

Switch
Swi, [2-3
SW2, |2-3

Switches location,

System Description
basic configuration, _|1-5
PLC-V/5 processor,

System description, _[1-4

Index -5

T

Terminating link

extended-local I/0,

remote /O,

Termination resistors, _|2-9
extended-local /0, _|2-11
using 150-Ohm resistors,
using 82-Ohm resistors,

timing
block-transfer data

during logic scan, _|7-14

to extended-local 1/0,

to remote /O,
discrete-transfer data

during I/O scan,

to extended-local /0,

to processor-resident I/O

to remote /0, [7-12]
I/0 scan, _[7-11
program scan,

/O scan housekeeping,
immediate /0, _[7-12| |7-14
Trunkline/Dropline connectien, . | 2-13

Typed read,

Typed write, _|6-18

U

understanding terms
plock-transfer data,
discrete-transfer data, _ |\
remote 1/O chassis,
remote I/O link, E

Upload all request, _[6-21
Upload complete,
UPLOAD.CPP, sample,
UPLOAD.MAK, sample,

v
VME

backplane jumpers,
signal usage,

signals on the P1 connector,
status file,

VME backplarie jumpers,
VME signal usage,
VME Status File, !

ErrorCodes,

physical structure _- _-
VMEbus interface, _. _.

commands,
VMEbus specifications,
VMEbus usage,

software-selectable bus-release mode,
ROR,
software-selectable bus-release mode,
RWD,
VMEDEMO.CPP, sample,
VMEDEMO.MAK, sample,

w
Write bytes physical,

@ ALLEN-BRADLEY

Allen-Bradley has been helping its customers improve productivity and quality for 90 years
A ROCKWELL INTERNATIONAL COMPANY

A-B designs, manufactures and supports a broad range of control and automation products
worldwide. They include logic processors, power and motion control devices, man-machine

interfaces and sensors. Allen-Bradley is a subsidiary of Rockwell International, one of the
world's leading technology companies.

Algeria » Argentina ¢ Australia ¢ Austria « Bahrain Belgium ¢ Brazil » Bulgaria « Canada * Chile « China, PRC Colombia ¢ Costa Rica Croatia « Cyprus ¢ Czech
Republic « Denmark ¢ Ecuador » Egypt * El Salvador « Finland France « Germany Greece » Guatemala ¢« Honduras « Hong Kong ¢ Hungary ¢ Iceland India ¢
Indonesia ¢ Israel ¢ i

Italy « Jamaica ¢ Japan ¢ Jordan ¢ Korea « Kuwait « Lebanon ¢ Malaysia « Mexico « New Zealand « Norway « Oman ¢ Pakistan ¢ Peru « Philippines
* Poland ¢ Portugal » Puerto Rico « Qatar « Romania ¢ Russia—CIS Saudi Arabia ¢ Singapore * Slovakia « Slovenia ¢ South Africa, Republic » Spain * Switzerland ¢
Taiwan « Thailand ¢ The Netherlands « Turkey ¢ United Arab Emirates ¢ United Kingdom ¢ United States « Uruguay Venezuela ¢ Yugoslavia

World Headquarters, Allen-Bradley, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Publication 1785-6.5.9—June 1996

PN 955125-95
Supersedes 1785-6.5.9—June 1994

Copyright 1996 Allen-Bradley Company, Inc. Printed in USA

	1785-6.5.9, PLC-5 VME VMEbus Programmable Controllers, User Manual
	Important User Information
	Table of Contents
	Summary of Changes
	Preface - Using this Manual
	Manual Objectives
	What this Manual Contains
	Audience
	Terms and Conventions
	Related Publications

	1 - Overview
	Chapter Objectives
	Features
	System Description
	VMEbus Interface
	Compatibility with the Standard PLC- 5 Processor
	Compatibility with the 6008- LTV Processor

	2 - Installation
	Chapter Objectives
	EMC Directive
	Low Voltage Directive

	Handling the Processor
	Setting the Switches
	Configuring the VME Backplane Jumpers
	Inserting the Processor into a Chassis
	Grounding
	Determining Power-Supply Requirements
	Connecting to Remote I/O
	Make Sure that You Have Correct Cable Lengths
	Prepare the Cable
	Make Remote I/O Connections
	Terminate the Link

	Connecting an Extended- Local I/ O Link
	Connecting a DH+ Link
	Connecting a Programming Terminal to Channel 0
	Installing, Removing, and Disposing of the Battery
	Installing or Removing the Processor Battery
	Disposing of the Battery

	3 - VMEbus Interface
	Chapter Objectives
	System Controller
	Bus-Release Modes
	VME LEDs
	VME Signal Usage
	Configuration Registers
	Commands

	4 - Ladder-Program Interfaces
	Chapter Objectives
	Ladder Messages
	Copy to VME
	Copy from VME
	Send VME Interrupt
	Check VME Status File

	Message Completion and Status Bits
	VME Status File
	Continuous Copy to/ from VME
	Error Codes

	VMEbus Interrupts

	5 - Commands
	Chapter Objectives
	Command Types
	Continuous-Copy Commands
	Notes on Copy Operations
	Copy Synchronization
	Error Codes

	Handle-Interrupts Command
	Send-PCCC Command
	Command-Protocol Error Codes
	Response-Word Error Codes

	6 - PLC-5/VME Processor Communications Commands
	Chapter Objectives
	PCCC Structure
	Supported PCCCs
	Header Bit/Byte Descriptions
	Echo
	Message Format
	Error Codes
	Sample API Module

	Identify Host and Status
	Message Format
	Error Codes
	Sample API Module

	Read-Modify-Write
	Message Format
	Error Codes
	Sample API Module

	Typed Read
	Message Format
	Error Codes

	Data Types
	Data-Type Field
	Example Data Types

	Typed Write
	Message Format
	Error Codes

	Set CPU Mode
	Message Format
	Error Codes
	Sample API Module

	Upload All Request
	Message Format
	Memory Segment Pointers
	Error Codes
	Sample API Module

	Download All Request
	Message Format
	Error Codes
	Sample API Module

	Upload Complete
	Message Format
	Error Codes
	Sample API Module

	Download Complete
	Message Format
	Error Codes
	Sample API Module

	Read Bytes Physical
	Message Format
	Error Codes
	Sample API Module

	Write Bytes Physical
	Message Format
	Error Codes
	Sample API

	Get Edit Resource
	Message Format
	Error Codes
	Sample API

	Return Edit Resource
	Message Format
	Error Codes
	Sample API

	Apply Port Configuration
	Command Parameters
	Message Format
	Error Codes
	Operation
	Sample API

	Restore Port Configuration
	Command Parameters
	Message Format
	Error Codes
	Operation
	Sample API

	Upload and Download Procedure
	Upload Procedure
	Download Procedure

	7 - Performance and Operation
	Chapter Objectives
	VME Throughput Time
	Communication Methods
	End-of-Scan Transfer
	Ladder-Logic Method

	Benchmark Tests
	Setup #1
	Setup #2
	Setup #3
	Setup #4
	Setup #5
	Setup #6

	Introduction to PLC-5/VME Processor Scanning
	Program Scanning
	I/O Scanning

	Discrete and Block Transfer I/ O Scanning
	Transferring Discrete Data
	Immediate I/O
	Transferring Block Data

	A - Sample Applications
	Appendix Objectives
	VMEDEMO.CPP
	VMEDEMO.MAK
	UPLOAD.CPP
	UPLOAD.MAK
	DOWNLOAD.CPP
	DOWNLOAD.MAK

	B - Sample Application Programming Interface Modules
	Appendix Objectives
	COMMON.H
	COMMON.C
	P40VCC0.H
	P40VCC0.C
	PCCC.H
	P40VHINT.H
	P40VHINT.C
	P40VSPCC.H
	P40VSPCC.C
	P40VWBP.H
	P40VWBP.C
	P40VAPC.H
	P40VAPC.C
	P40VULC.H
	P40VULC.C
	P40VDLA.H
	P40VDLA.C
	P40VDLC.H
	P40VDLC.C
	P40VECHO.H
	P40VECHO.C
	P40VGER.H
	P40VGER.C
	P40VIHAS.H
	P40VIHAS.C
	P40VRBP.H
	P40VRBP.C
	P40VRER.H
	P40VRER.C
	P40VRMW.H
	P40VRMW.C
	P40VRPC.H
	P40VRPC.C
	P40VSCM.H
	P40VSCM.C
	P40VULA.H
	P40VULA.C

	C - Specifications
	Environmental Specifications
	VMEbus Specifications
	PLC-5/VME Battery Specifications (1770-WV/A)
	PLC-5/VME Processor Specifications

	D - Troubleshooting
	Appendix Objectives
	VME Backplane Jumpers
	VME LEDs
	Message Completion and Status Bits Error Codes
	Continuous-Copy Error Codes
	Command-Protocol Error Codes
	Response-Word Error Codes
	PCCC Command Status Codes
	Avoiding Multiple Watchdog Faults1.
	Inserting Ladder Rungs at the 56K- Word Limit
	Recovering from Possible Memory Corruption
	Examining Fault Codes
	Avoiding Run-time Errors when Executing FBC and DDT Instructions

	E - Cable Connections
	Cable Connections for Communication Boards
	Cable Connections for Serial- Port Communications
	Front Panel
	9-Pin Serial Port (1784-T50, 1784-T53, 6160-T60, 6160-T70, IBM PC/AT)
	25-Pin Serial Port (1784-T47, IBM XT, IBM PS/2 Model 30, IBM PS/2 Model 60)
	9-Pin Serial Port (6120, 6122)

	Cable Pin Assignments
	Cable Specifications

	Index
	Back Cover

